Abstract:
A method for establishing a pairing between a smart-home device and an online account may include instantiating an application on a computing device and receiving a first code from a central server. The application may receive a second code from printed material associated with the smart-home device. The smart-home device may broadcast a first communication protocol, and the application may join the first mutation protocol. The application can be authenticated by the smart-home device using the second code, and the application can receive an identity of a second communication protocol from a user. The application can then transmit the identity of the second communication protocol to the smart-home device. The smart-home device can use the second mutation protocol to access the Internet and transmit the first code to the central server, where the central server can use the first code in completing the pairing process.
Abstract:
System for displaying hazard events and adjusting hazard detector settings on a mobile device includes a user interface executed on the mobile device, a hazard detector, and a computer server system communicatively coupled to the mobile device and hazard detector. The hazard detector generates hazard events indicating detection of smoke or carbon monoxide. The hazard events are transmitted to the computer server system and then to the mobile device. User interface displays the hazard events in an event group. User interface receives an adjusted value for a setting of the hazard detector and transmits the adjusted value to the computer server system. The computer server system determines that the adjusted value corresponds to the hazard detector, receives a check-in event from the hazard detector, and transmits the adjusted value to the hazard detector in response to receiving the check-in event. The hazard detector applies the adjusted value to the setting.
Abstract:
System for displaying hazard events and adjusting hazard detector settings on a mobile device includes a user interface executed on the mobile device, a hazard detector, and a computer server system communicatively coupled to the mobile device and hazard detector. The hazard detector generates hazard events indicating detection of smoke or carbon monoxide. The hazard events are transmitted to the computer server system and then to the mobile device. User interface displays the hazard events in an event group. User interface receives an adjusted value for a setting of the hazard detector and transmits the adjusted value to the computer server system. The computer server system determines that the adjusted value corresponds to the hazard detector, receives a check-in event from the hazard detector, and transmits the adjusted value to the hazard detector in response to receiving the check-in event. The hazard detector applies the adjusted value to the setting.
Abstract:
A method for establishing a pairing between a smart-home device and an online account may include instantiating an application on a computing device and receiving a first code from a central server. The application may receive a second code from printed material associated with the smart-home device. The smart-home device may broadcast a first communication protocol, and the application may join the first mutation protocol. The application can be authenticated by the smart-home device using the second code, and the application can receive an identity of a second communication protocol from a user. The application can then transmit the identity of the second communication protocol to the smart-home device. The smart-home device can use the second mutation protocol to access the Internet and transmit the first code to the central server, where the central server can use the first code in completing the pairing process.
Abstract:
System for displaying hazard events and adjusting hazard detector settings on a mobile device includes a user interface executed on the mobile device, a hazard detector, and a computer server system communicatively coupled to the mobile device and hazard detector. The hazard detector generates hazard events indicating detection of smoke or carbon monoxide. The hazard events are transmitted to the computer server system and then to the mobile device. User interface displays the hazard events in an event group. User interface receives an adjusted value for a setting of the hazard detector and transmits the adjusted value to the computer server system. The computer server system determines that the adjusted value corresponds to the hazard detector, receives a check-in event from the hazard detector, and transmits the adjusted value to the hazard detector in response to receiving the check-in event. The hazard detector applies the adjusted value to the setting.
Abstract:
Systems and methods are described for interactively and graphically displaying performance information to a user of an HVAC system controlled by a self-programming network-connected thermostat. The information is made on a remote display device such as a smartphone, tablet computer or other computer, and includes a graphical daily summary each of several days. In response to a user selection of a day, detailed performance information is graphically displayed that can include an indication of HVAC activity on a timeline, the number of hours of HVAC activity, as well as one or more symbols on a timeline indicating setpoint changes, and when a setpoint was changed due to non-occupancy.
Abstract:
A novel small format touch screen user interface for displaying, adding and editing program setpoints is described. When editing a setpoint the user's input is constrained such that the user can only alter one parameter (either time or temperature). As soon as the user begins to drag a setpoint icon in either a horizontal (i.e. adjusting time), or vertical (i.e. adjusting temperature), the other parameter is constrained. Additionally, the disclosed user interface includes displaying information as to how the setpoint was most recently added or adjusted. For example the display can be used to indicate whether a setpoint was added or adjusted (1) on the thermostat itself; (2) by an automated learning algorithm; (3) by a user on a web client; or (4) by a user using a mobile client (such as a smart phone or tablet PC). Further, the name of the particular device is also displayed if known.
Abstract:
Systems and methods are described for interactively, graphically displaying and reporting performance information to a user of an HVAC system controlled by a self-programming network-connected thermostat. The information is made on a remote display device such as a smartphone, tablet computer or other computer, and includes a graphical daily or monthly summary each of several days or months respectively. In response to a user selection of a day, detailed performance information is graphically displayed that can include an indication of HVAC activity on a timeline, the number of hours of HVAC activity, as well as one or more symbols on a timeline indicating setpoint changes, and when a setpoint was changed due to non-occupancy.
Abstract:
System for displaying hazard events and adjusting hazard detector settings on a mobile device includes a user interface executed on the mobile device, a hazard detector, and a computer server system communicatively coupled to the mobile device and hazard detector. The hazard detector generates hazard events indicating detection of smoke or carbon monoxide. The hazard events are transmitted to the computer server system and then to the mobile device. User interface displays the hazard events in an event group. User interface receives an adjusted value for a setting of the hazard detector and transmits the adjusted value to the computer server system. The computer server system determines that the adjusted value corresponds to the hazard detector, receives a check-in event from the hazard detector, and transmits the adjusted value to the hazard detector in response to receiving the check-in event. The hazard detector applies the adjusted value to the setting.
Abstract:
A method for establishing a pairing between a hazard detector and an online account may include instantiating an application on a mobile computing device and receiving a first code from a central server. The application may receive a second code from printed material associated with the hazard detector. The hazard detector may broadcast a Wi-Fi access point, and the application may join the Wi-Fi access point. The application can be authenticated by the hazard detector using the second code, and the application can receive an identity of a home Wi-Fi network from a user. The application can then transmit the identity of the home Wi-Fi network to the hazard detector. The hazard detector can use the home Wi-Fi network to access the Internet and transmit the first code to the central server, where the central server can use the first code in completing the pairing process.