Abstract:
One illustrative method disclosed herein includes, among other things, performing a source/drain extension ion implantation to form a doped extension implant region in the source/drain regions of the device, performing an ion implantation process on the source/drain regions with a Group VII material (e.g., fluorine), after performing the Group VII material ion implantation process, forming a capping material layer above the source/drain regions, and, with the capping material layer in position, performing an anneal process so as to form stacking faults in the source/drain regions.
Abstract:
One illustrative device disclosed herein includes a plurality of source/drain regions positioned in an active region on opposite sides of a gate structure, each of the source/drain regions having a lateral width in a gate length direction of the transistor and a plurality of halo regions, wherein each of the halo regions is positioned under a portion, but not all, of the lateral width of one of the plurality of source/drain regions. A method disclosed herein includes forming a plurality of halo implant regions in an active region, wherein an outer edge of each of the halo implant regions is laterally spaced apart from an adjacent inner edge of an isolation region.
Abstract:
A semiconductor structure with an improved shallow trench isolation (STI) region and method of fabrication is disclosed. The STI region comprises a lower portion filled with oxide and an upper portion comprising a high Young's modulus (HYM) liner disposed on the lower portion and trench sidewalls and filled with oxide. The HYM liner is disposed adjacent to source-drain regions, and serves to reduce stress relaxation within the shallow trench isolation (STI) oxide, which has a relatively low Young's modulus and is soft. Hence, the HYM liner serves to increase the desired stress imparted by the embedded stressor source-drain regions, which enhances carrier mobility, thus increasing semiconductor performance.
Abstract:
Approaches for enabling epitaxial growth of silicon fins in a device (e.g., a fin field effect transistor device (FinFET)) are provided. Specifically, approaches are provided for forming a set of silicon fins for a FinFET device, the FinFET device comprising: a set of gate structures formed over a substrate, each of the set of gate structures including a capping layer and a set of spacers; an oxide fill formed over the set of gate structures; a set of openings formed in the device by removing the capping layer and the set of spacers from one or more of the set of gate structures; a silicon material epitaxially grown within the set of openings in the device and then planarized; and wherein the oxide fill is etched to expose the silicon material and form the set of fins.
Abstract:
Approaches for enabling epitaxial growth of silicon fins in a device (e.g., a fin field effect transistor device (FinFET)) are provided. Specifically, approaches are provided for forming a set of silicon fins for a FinFET device, the FinFET device comprising: a set of gate structures formed over a substrate, each of the set of gate structures including a capping layer and a set of spacers; an oxide fill formed over the set of gate structures; a set of openings formed in the device by removing the capping layer and the set of spacers from one or more of the set of gate structures; a silicon material epitaxially grown within the set of openings in the device and then planarized; and wherein the oxide fill is etched to expose the silicon material and form the set of fins.
Abstract:
One illustrative device disclosed herein includes a plurality of source/drain regions positioned in an active region on opposite sides of a gate structure, each of the source/drain regions having a lateral width in a gate length direction of the transistor and a plurality of halo regions, wherein each of the halo regions is positioned under a portion, but not all, of the lateral width of one of the plurality of source/drain regions. A method disclosed herein includes forming a plurality of halo implant regions in an active region, wherein an outer edge of each of the halo implant regions is laterally spaced apart from an adjacent inner edge of an isolation region.
Abstract:
One illustrative method disclosed herein includes, among other things, performing a source/drain extension ion implantation to form a doped extension implant region in the source/drain regions of the device, performing an ion implantation process on the source/drain regions with a Group VII material (e.g., fluorine), after performing the Group VII material ion implantation process, forming a capping material layer above the source/drain regions, and, with the capping material layer in position, performing an anneal process so as to form stacking faults in the source/drain regions.
Abstract:
A semiconductor structure with an improved shallow trench isolation (STI) region and method of fabrication is disclosed. The STI region comprises a lower portion filled with oxide and an upper portion comprising a high Young's modulus (HYM) liner disposed on the lower portion and trench sidewalls and filled with oxide. The HYM liner is disposed adjacent to source-drain regions, and serves to reduce stress relaxation within the shallow trench isolation (STI) oxide, which has a relatively low Young's modulus and is soft. Hence, the HYM liner serves to increase the desired stress imparted by the embedded stressor source-drain regions, which enhances carrier mobility, thus increasing semiconductor performance.
Abstract:
One illustrative device disclosed herein includes a plurality of source/drain regions positioned in an active region on opposite sides of a gate structure, each of the source/drain regions having a lateral width in a gate length direction of the transistor and a plurality of halo regions, wherein each of the halo regions is positioned under a portion, but not all, of the lateral width of one of the plurality of source/drain regions. A method disclosed herein includes forming a plurality of halo implant regions in an active region, wherein an outer edge of each of the halo implant regions is laterally spaced apart from an adjacent inner edge of an isolation region.
Abstract:
Approaches for enabling epitaxial growth of silicon fins in a device (e.g., a fin field effect transistor device (FinFET)) are provided. Specifically, approaches are provided for forming a set of silicon fins for a FinFET device, the FinFET device comprising: a set of gate structures formed over a substrate, each of the set of gate structures including a capping layer and a set of spacers; an oxide fill formed over the set of gate structures; a set of openings formed in the device by removing the capping layer and the set of spacers from one or more of the set of gate structures; a silicon material epitaxially grown within the set of openings in the device and then planarized; and wherein the oxide fill is etched to expose the silicon material and form the set of fins.