摘要:
Techniques for forming a ruthenium (Ru) capping layer on a copper (Cu) wire are provided. In one aspect, a method of forming a Ru capping layer on at least one exposed surface of a Cu wire embedded in a dielectric structure includes the following steps. A first Ru layer is selectively deposited onto the Cu wire and the dielectric structure by chemical vapor deposition (CVD) for a period of time during which selective nucleation of the Ru occurs on the surface of the Cu wire. Any nucleated Ru present on the dielectric structure is oxidized. The oxidized Ru and an aqueous acid are contacted to remove the oxidized Ru from the dielectric structure based on a selectivity of the aqueous acid in dissolving the oxidized Ru. A second Ru layer is selectively deposited onto the first Ru layer by CVD to produce a thicker Ru layer. The steps of oxidizing and contacting the oxidized Ru and an aqueous acid are repeated until a Ru layer having a thickness that is suitable for use as a Ru capping layer on at least one exposed surface of the Cu wire embedded in the dielectric structure is achieved.
摘要:
Techniques for improving the conductivity of copper (Cu)-filled vias are provided. In one aspect, a method of fabricating a Cu-filled via is provided. The method includes the following steps. A via is etched in a dielectric. The via is lined with a diffusion barrier. A thin ruthenium (Ru) layer is conformally deposited onto the diffusion barrier. A thin seed Cu layer is deposited on the Ru layer. A first anneal is performed to increase a grain size of the seed Cu layer. The via is filled with additional Cu. A second anneal is performed to increase the grain size of the additional Cu.
摘要:
Techniques formation of high purity copper (Cu)-filled lines and vias are provided. In one aspect, a method of fabricating lines and vias filled with high purity copper with is provided. The method includes the following steps. A via is etched in a dielectric. The via is lined with a diffusion barrier. A thin ruthenium (Ru) layer is conformally deposited onto the diffusion barrier. A Cu layer is deposited on the Ru layer by a sputtering process. A reflow anneal is performed to eliminate voids in the lines and vias.
摘要:
Techniques for improving the conductivity of copper (Cu)-filled vias are provided. In one aspect, a method of fabricating a Cu-filled via is provided. The method includes the following steps. A via is etched in a dielectric. The via is lined with a diffusion barrier. A thin ruthenium (Ru) layer is conformally deposited onto the diffusion barrier. A thin seed Cu layer is deposited on the Ru layer. A first anneal is performed to increase a grain size of the seed Cu layer. The via is filled with additional Cu. A second anneal is performed to increase the grain size of the additional Cu.
摘要:
Techniques formation of high purity copper (Cu)-filled lines and vias are provided. In one aspect, a method of fabricating lines and vias filled with high purity copper with is provided. The method includes the following steps. A via is etched in a dielectric. The via is lined with a diffusion barrier. A thin ruthenium (Ru) layer is conformally deposited onto the diffusion barrier. A Cu layer is deposited on the Ru layer by a sputtering process. A reflow anneal is performed to eliminate voids in the lines and vias.
摘要:
Techniques for nitridation of copper (Cu) wires. In one aspect, a method for nitridation of a Cu wire is provided. The method includes the following step. The Cu wire and trimethylsilylazide (TMSAZ) in a carrier gas are contacted at a temperature, pressure and for a length of time sufficient to form a nitridized layer on one or more surfaces of the Cu wire. The Cu wire can be part of a wiring structure and can be embedded in a dielectric media. The dielectric media can comprise an ultra low-k dielectric media.
摘要:
A borderless contact structure or partially borderless contact structure and methods of manufacture are disclosed. The method includes forming a gate structure and a space within the gate structure, defined by spacers. The method further includes blanket depositing a sealing material in the space, over the gate structure and on a semiconductor material. The method further includes removing the sealing material from over the gate structure and on the semiconductor material, leaving the sealing material within the space. The method further includes forming an interlevel dielectric material over the gate structure. The method further includes patterning the interlevel dielectric material to form an opening exposing the semiconductor material and a portion of the gate structure. The method further includes forming a contact in the opening formed in the interlevel dielectric material.
摘要:
A method is provided that includes first etching a substrate according to a first mask. The first etching forms a first etch feature in the substrate to a first depth. The first etching also forms a sliver opening in the substrate. The sliver opening may then be filled with a fill material. A second mask may be formed by removing a portion of the first mask. The substrate exposed by the second mask may be etched with a second etch, in which the second etching is selective to the fill material. The second etching extends the first etch feature to a second depth that is greater than the first depth, and the second etch forms a second etch feature. The first etch feature and the second etch feature may then be filled with a conductive metal.
摘要:
The problem of poor adherence of a dielectric coating on a patterned metal structure can be solved by forming an adhesion layer on exposed surfaces of such metal structure prior to deposition of such dielectric. According to an embodiment, the invention provides a method to form a self-aligned adhesion layer on the surface of metal interconnect structure within an integrated circuit by exposing the metal structure to a controlled atmosphere and a flow of nitrogen-containing gas.
摘要:
A method of fabricating an interconnect structure is provided which includes providing a dielectric material having a dielectric constant of about 3.0 or less and at least one conductive material embedded therein, the at least one conductive material has an upper surface that is coplanar with an upper surface of the dielectric material; and forming a noble metal-containing cap directly on the upper surface of the at least one conductive material, wherein the noble metal cap is discontinuous or non-uniform.