Abstract:
A compact system for active co-boresight measurement includes a detector, a steering mirror, and a controller. The detector detects a portion of a transmission beam emitted by a transceiver and a portion of a received beam that is received from a remote terminal. The controller measures an offset between the detected portion of the received beam and the detected portion of the transmission beam. The controller controls a position of the steering mirror to align the portion of the received beam with a defined position on the detector, the defined position based in part on the offset.
Abstract:
A system for active co-boresight measurement includes a detector, first and second steering mirrors, and a controller. The detector detects a portion of a transmission beam emitted by a transmitter and a portion of a received beam received from a remote terminal. The controller instructs the first steering mirror to scan the detected portion of the received beam to determine an alignment position. The controller controls a position of the first steering mirror to align the portion of the received beam with the alignment position on the detector, and controls a position of the second steering mirror to align the detected portion of the transmission beam with a defined position on the detector. The detected portion of the received beam at the alignment position and the detected portion of the transmission beam at the defined position correspond to the received beam and the transmission beam being aligned.
Abstract:
Optical communication systems and methods using coherently combined optical beams are disclosed. A representative system includes a first mirror having a first actuator for adjusting a position of the first mirror in a path of a first optical beam and a first optical detector for receiving light reflected from the first mirror. The system also includes a second mirror having a second actuator for adjusting a position of the second mirror in a path of a second optical beam and a second optical detector for receiving light reflected from the second mirror. The system includes an interferometer for measuring an interference between the first and second optical beams and a third optical detector for receiving light from the second interfered optical beam. Intensity of the first interfered optical beam is increased by the interference, and intensity of the second interfered optical beam is decreased by the interference.
Abstract:
Optical communication systems and methods using coherently combined optical beams are disclosed. A representative system includes a first mirror having a first actuator for adjusting a position of the first mirror in a path of a first optical beam and a first optical detector for receiving light reflected from the first mirror. The system also includes a second mirror having a second actuator for adjusting a position of the second mirror in a path of a second optical beam and a second optical detector for receiving light reflected from the second mirror. The system includes an interferometer for measuring an interference between the first and second optical beams and a third optical detector for receiving light from the second interfered optical beam. Intensity of the first interfered optical beam is increased by the interference, and intensity of the second interfered optical beam is decreased by the interference.
Abstract:
In one embodiment, a system includes a laser configured to generate a laser beam and a laser-aiming module configured to aim the laser beam to be at least in part incident on a remotely located, continuously moving solar cell. The system also includes a controller configured to receive a feedback signal indicating a position of the laser beam relative to the remotely located, continuously moving solar cell and instruct the laser-aiming module to adjust the aiming of the laser beam based on the feedback signal.
Abstract:
The disclosed system may include (1) an optical element that receives an optical beam, (2) a wide field-of-view (FOV) quadrant photodetector that receives, from the optical element, first light originating from the optical beam, (3) a narrow FOV quadrant photodetector that receives, from the optical element, second light originating from the optical beam, and (4) a controller that controls an orientation of the optical element during at least a period of time based on a weighted combination of (a) output of the wide FOV quadrant photodetector in response to the first light, and (b) output of the narrow FOV quadrant photodetector in response to the second light. Various other systems, methods, and computer-readable media are also disclosed.
Abstract:
The disclosed may include various systems and methods for improving the efficiency and scalability of large-scale systems. For example, the disclosed may include systems and methods for automatic privacy enforcement using privacy-aware infrastructure, scalable general-purpose low cost integer motion search, efficient scaler filter coefficients layout for flexible scaling quality control with limited hardware resources, hardware optimization for power saving with both different codecs enabled, optimizing storage overhead and performance for large distributed data warehouse, mass and volume efficient integration of intersatellite link terminals to a satellite bus, and overcoming retention limit for memory-based distributed database systems.
Abstract:
Systems and methods for optical communication through air or space are disclosed. A method includes encoding one or more data frames with a data-link layer forward error correction (FEC) code to produce a plurality of encoded data frames and transmitting the plurality of encoded data frames from a transmitter (TX) to a receiver (RX) at least partially through air or space using a plurality of optical beams. The RX identifies a corrupted encoded data frame and reconstructs the corrupted encoded data frame using a data-link layer FEC decoder operating over a plurality of non-corrupted encoded data frames.
Abstract:
In one embodiment, a system includes a laser configured to generate a laser beam and a laser-aiming module configured to aim the laser beam to be at least in part incident on a remotely located, continuously moving solar cell. The system also includes a controller configured to receive a feedback signal indicating a position of the laser beam relative to the remotely located, continuously moving solar cell and instruct the laser-aiming module to adjust the aiming of the laser beam based on the feedback signal.
Abstract:
Systems and methods for optical communication through air or space are disclosed. A method includes encoding one or more data frames with a data-link layer forward error correction (FEC) code to produce a plurality of encoded data frames and transmitting the plurality of encoded data frames from a transmitter (TX) to a receiver (RX) at least partially through air or space using a plurality of optical beams. The RX identifies a corrupted encoded data frame and reconstructs the corrupted encoded data frame using a data-link layer FEC decoder operating over a plurality of non-corrupted encoded data frames.