Abstract:
In one embodiment, an apparatus includes a wavelength-shifting element configured to receive an input-light signal. The wavelength-shifting element includes a wavelength-shifting material configured to absorb at least a portion of the received input-light signal and produce an emitted-light signal from the absorbed portion of the received input-light signal. The apparatus also includes an optical-concentrating element configured to receive at least a portion of the emitted-light signal and concentrate the received portion of the emitted-light signal onto a photodetector. The apparatus further includes the photodetector configured to receive the concentrated portion of the emitted-light signal and produce an electrical current corresponding to the concentrated portion of the emitted-light signal.
Abstract:
In one embodiment, an apparatus includes a wavelength-shifting element configured to receive an input-light signal. The wavelength-shifting element includes a wavelength-shifting material configured to absorb at least a portion of the received input-light signal and produce an emitted-light signal from the absorbed portion of the received input-light signal. The apparatus also includes a plasmonic grating comprising a plurality of plasmonic-grating elements configured to receive at least a portion of the emitted-light signal and direct the received portion of the emitted-light signal onto a photodetector. The apparatus further includes the photodetector configured to receive the directed portion of the emitted-light signal and produce an electrical current corresponding to the directed portion of the emitted-light signal.
Abstract:
Various of the disclosed embodiments incorporate wavelength-shifting (WLS) materials to facilitate high data rate communication. Some embodiments employ a waveguide incorporating such WLS materials to receive a wireless signal from a source. The signal may be, e.g., in the optical or ultraviolet ranges, facilitating a ˜10 Gbps data rate. Because the WLS material is sensitive in all directions, the source may be isotropic or wide-angled. The WLS material may be shaped into one or more “bands” that may cover an object, e.g., a head-mounted display. A detector may be coupled with the bands to receive the wavelength-shifted signal and to recover the original signal from the source. The WLS material may be modified to improve the waveguide retention, e.g., by incorporating layers of material having a different reflection coefficient or a Bragg reflector.
Abstract:
Systems and methods for optical communication through air or space are disclosed. A method includes encoding one or more data frames with a data-link layer forward error correction (FEC) code to produce a plurality of encoded data frames and transmitting the plurality of encoded data frames from a transmitter (TX) to a receiver (RX) at least partially through air or space using a plurality of optical beams. The RX identifies a corrupted encoded data frame and reconstructs the corrupted encoded data frame using a data-link layer FEC decoder operating over a plurality of non-corrupted encoded data frames.
Abstract:
Systems and methods for optical communication through air or space are disclosed. A method includes encoding one or more data frames with a data-link layer forward error correction (FEC) code to produce a plurality of encoded data frames and transmitting the plurality of encoded data frames from a transmitter (TX) to a receiver (RX) at least partially through air or space using a plurality of optical beams. The RX identifies a corrupted encoded data frame and reconstructs the corrupted encoded data frame using a data-link layer FEC decoder operating over a plurality of non-corrupted encoded data frames.
Abstract:
Various of the disclosed embodiments incorporate wavelength-shifting (WLS) materials to facilitate high data rate communication. Some embodiments employ a waveguide incorporating such WLS materials to receive a wireless signal from a source. The signal may be, e.g., in the optical or ultraviolet ranges, facilitating a ˜10 Gbps data rate. Because the WLS material is sensitive in all directions, the source may be isotropic or wide-angled. The WLS material may be shaped into one or more “bands” that may cover an object, e.g., a head-mounted display. A detector may be coupled with the bands to receive the wavelength-shifted signal and to recover the original signal from the source. The WLS material may be modified to improve the waveguide retention, e.g., by incorporating layers of material having a different reflection coefficient or a Bragg reflector.
Abstract:
In one embodiment, an apparatus includes a photoluminescent wavelength-shifting material configured to receive an input-light data signal comprising a first range of wavelengths, absorb at least a portion of the received input-light data signal, and produce an emitted-light data signal comprising a second range of wavelengths based on an upper-state lifetime of the photoluminescent wavelength-shifting material. The apparatus also includes a focusing element configured to receive at least a portion of the emitted-light data signal, concentrate the received portion of the emitted-light data signal, and produce a concentrated-light data signal. The apparatus further includes a photodetector configured to receive the concentrated-light data signal, and produce an electrical current corresponding to the concentrated-light data signal.
Abstract:
In one embodiment, an apparatus includes a photoluminescent wavelength-shifting material configured to receive an input-light data signal comprising a first range of wavelengths, absorb at least a portion of the received input-light data signal, and produce an emitted-light data signal comprising a second range of wavelengths based on an upper-state lifetime of the photoluminescent wavelength-shifting material. The apparatus also includes a focusing element configured to receive at least a portion of the emitted-light data signal, concentrate the received portion of the emitted-light data signal, and produce a concentrated-light data signal. The apparatus further includes a photodetector configured to receive the concentrated-light data signal, and produce an electrical current corresponding to the concentrated-light data signal.
Abstract:
Various of the disclosed embodiments incorporate wavelength-shifting (WLS) materials to facilitate high data rate communication. Some embodiments employ a waveguide incorporating such WLS materials to receive a wireless signal from a source. The signal may be, e.g., in the optical or ultraviolet ranges, facilitating a ˜10 Gbps data rate. Because the WLS material is sensitive in all directions, the source may be isotropic or wide-angled. The WLS material may be shaped into one or more “bands” that may cover an object, e.g., a head-mounted display. A detector may be coupled with the bands to receive the wavelength-shifted signal and to recover the original signal from the source. The WLS material may be modified to improve the waveguide retention, e.g., by incorporating layers of material having a different reflection coefficient or a Bragg reflector.
Abstract:
In one embodiment, an apparatus includes a wavelength-shifting element configured to receive an input-light signal. The wavelength-shifting element includes a wavelength-shifting material configured to absorb at least a portion of the received input-light signal and produce an emitted-light signal from the absorbed portion of the received input-light signal. The apparatus also includes a plasmonic grating comprising a plurality of plasmonic-grating elements configured to receive at least a portion of the emitted-light signal and direct the received portion of the emitted-light signal onto a photodetector. The apparatus further includes the photodetector configured to receive the directed portion of the emitted-light signal and produce an electrical current corresponding to the directed portion of the emitted-light signal.