Abstract:
A method and apparatus for forming a circuit on an uneven two-dimensional (2-D) or three-dimensional (3-D) surface of an object is described. An amount of electrically conductive material to form a circuit between two points on the object is determined. The determined amount of electrically conductive material is deposited on a first surface of a stretchable substrate. The stretchable substrate with the deposited electrically conductive material is applied to the object to form a circuit between two points on the object.
Abstract:
An electronic module assembly and method of assembling an electronic module to a conductive fabric are provided. An electronic module assembly comprises a non-conductive fabric and a conductive fabric covering at least part of a first side of the non-conductive fabric. An electronics module is disposed on the conductive fabric, and a portion of the electronics module includes a wall defining a through hole. A fastener passing through the through hole and passing through the conductive fabric is configured to electronically couple the electronics module to the conductive fabric.
Abstract:
An RFID device assembly is fabricated by positioning an electrically conductive wire onto a fabric as a pattern that forms an antenna, and securing the wire to the fabric by stitching a non-electrically conductive thread over the wire and to the fabric. The two ends of the electrically conductive wire are positioned for coupling to antenna contact pads on an RFID device. The RFID device is attached to the fabric either before or after the electrically conductive wire is secured to the fabric by the stitched non-electrically conductive thread.
Abstract:
A stretchable wire assembly includes a metal wire coupled between two elastic substrates. The two elastic substrates are selectively coupled together, and the metal wire is attached to one or both elastic substrates at select locations. The form of the metal wire is such that when the elastic substrates are in a relaxed, or non-stretched, state the metal wire forms a tortuous path, such as a waveform, along the coupled elastic substrates. The tortuous path of the metal wire provides slack such that as the elastic substrates are stretched the slack is taken up. Once released, the elastic substrates move from the stretched position to the relaxed, non-stretched position, and slack is reintroduced into the metal wire in the form of the original tortuous path.
Abstract:
A disconnectable snap button connection for connecting electronic devices to fabrics, the disconnectable snap button connection and a method for making the same is described herein. The disconnectable snap button connection includes a component, a piece of conductive material, a piece of non-conductive material; wherein the piece of conductive material is attached to the piece of non-conductive material, a male portion of the disconnectable snap button, wherein the male portion of the disconnectable snap button is attached to the component, and a female portion of the disconnectable snap button, wherein the female portion of the disconnectable snap button is attached to the piece of conductive material. When the male portion of the disconnectable snap button is inserted into the female portion of the disconnectable snap button, a connection is made between the component and the piece of conductive material.
Abstract:
An electronic module assembly and method of assembling an electronic module to a conductive fabric are provided. An electronic module assembly comprises a non-conductive fabric and a conductive fabric covering at least part of a first side of the non-conductive fabric. An electronics module is disposed on the conductive fabric, and a portion of the electronics module includes a wall defining a through hole. A fastener passing through the through hole and passing through the conductive fabric is configured to electronically couple the electronics module to the conductive fabric.
Abstract:
An electronic sensor device has one or more sensor electrodes and one or more electrical conductors printed on a substrate. Textile layers are attached on either side of the substrate with access to the electrical conductors provided by a conductive snap assembly. The substrate can be a TPU (thermoplastic polyurethane) film. The sensor can be a biosensor, and the biosensor is attached to a compression textile, such as a compression shirt, and electrically interconnected using printed conductive ink interconnects to a conductive snap button.
Abstract:
An electronics assembly includes one or more electronic components coupled to a fabric. Each electronic component includes one or more electrical connection points, such as a bond pad or solder bump. The electronics assembly also includes one or more electrically conductive wire braids, one electrically conductive wire braid coupled to one electrical connection point on an electronic component. The electrically conductive wire braid is stitched to the fabric by an electrically conductive wire, thereby providing an electrical connection between the electronic component and the electrically conductive wire via the electrically conductive wire braid.
Abstract:
A printed circuit board is formed from a plurality of thinner PCBs stacked on top of each other with an intermediate metal interconnect material selectively positioned between adjacent PCBs. The metal interconnect material is selectively positioned on surface contact points of correspondingly aligned plated through holes on the adjacent printed circuit boards. The stacked printed circuit boards and intermediate metal interconnect material are laminated, thereby sintering the metal interconnect material and the surface contact points of the plated through holes to form electrical interconnects between plated through holes on adjacent printed circuit boards. The metal interconnect material is preferably the same as the plating material used to plate the through holes, such as copper.
Abstract:
An electrical interconnect includes a copper pillar and solder cap. The copper pillar and solder cap are formed onto a contact pad or an under bump metallurgy (UBM). In some applications, the contact pad or UBM is part of an electronic component, such as a semiconductor chip. In other cases, the contact pad is part of laminated substrate, such as a printed circuit board (PCB), or a ceramic substrate. The copper pillar and the solder cap are printed using an ink printer, such as an aerosol ink jet printer. A post heat treatment solidifies the interconnection between the contact pad or UBM, the copper pillar and the solder cap.