Abstract:
The present invention is a method for increasing the refresh time of DRAM. This invention is for decreasing the stress between the bird's beak of field oxide and silicon substrate by using fluorine ion implant before field oxidation and the optimal structure of LOCOS to effectively preventing the current leakage from the bird's beak of field oxide. Therefore, this invention can increase the refresh time of DRAM and greatly enhance the performance in DRAM.
Abstract:
A method for manufacturing a semiconductor device having an excellent metallization is provided. The method includes the steps of a). providing a semiconductor substrate, b) forming a conductive layer on the semiconductor substrate, c) forming a dielectric layer on the conductive layer, d) forming a titanium nitride layer directly on the dielectric layer without contacting the conductive layer, and e) patternizing the titanium nitride layer, the dielectric layer and the conductive layer, wherein the dielectric layer is used for avoiding spontaneous electrochemical reaction between the titanium nitride layer and the conductive layer,
Abstract:
A method of fabricating a double layered polisilicon film with oxygen diffusion for scaled down polysilicon thin film transistor/resistor. The double layered polysilicon film structure includes: a first heavily doped polysilicon layer, produced by Low Pressure Chemical Vapor Deposition (LPCVD) system at about 610 degrees Centigrade, is used as electrodes of resistor or source/drain electrodes of a transistor, and a second layer of polysilicon, deposited by LPCVD at the temperature about 560 degrees Centigrade, is used as a resistor layer or a channel layer of a transistor.Oxygen treatment is applied at low temperature after the first polysilicon layer is defined. The oxygen present at polysilicon grain boundary blocks the dopant diffusing from the first electrode polysilicon to the second polysilicon which is used as resistor region or a channel region of a transistor. Thus, the resistor can maintain high resistivity and the transistor can maintain low threshold voltage even when they are scaled down.