Apparatus for applying coatings
    1.
    发明授权
    Apparatus for applying coatings 失效
    涂料用涂料

    公开(公告)号:US4029045A

    公开(公告)日:1977-06-14

    申请号:US671294

    申请日:1976-03-29

    摘要: An apparatus for applying coatings to very small objects which includes levitating the objects in an environment established for vapor deposition or sputtering in such a way that a uniform coating can be applied. The design includes a permanent magnet and a retaining diaphragm together with a variable frequency oscillator and amplifier to achieve vibrations of the diaphragm during the coating operation in such magnitude as to keep the selected particles suspended above the diaphragm to expose the entire surface to the coating being applied.

    摘要翻译: 一种用于将涂层施加到非常小的物体上的装置,其包括在建立用于气相沉积或溅射的环境中悬浮物体,使得能够施加均匀的涂层。 该设计包括永磁体和保持膜以及可变频率振荡器和放大器,以在涂覆操作期间实现振膜的振动,使得将选定的颗粒悬浮在隔膜上方以将整个表面暴露于涂层 应用。

    Object Recognition with 3D Models
    2.
    发明申请
    Object Recognition with 3D Models 有权
    对象识别与3D模型

    公开(公告)号:US20110002531A1

    公开(公告)日:2011-01-06

    申请号:US12827185

    申请日:2010-06-30

    IPC分类号: G06K9/00

    摘要: An “active learning” method trains a compact classifier for view-based object recognition. The method actively generates its own training data. Specifically, the generation of synthetic training images is controlled within an iterative training process. Valuable and/or informative object views are found in a low-dimensional rendering space and then added iteratively to the training set. In each iteration, new views are generated. A sparse training set is iteratively generated by searching for local minima of a classifier's output in a low-dimensional space of rendering parameters. An initial training set is generated. The classifier is trained using the training set. Local minima are found of the classifier's output in the low-dimensional rendering space. Images are rendered at the local minima. The newly-rendered images are added to the training set. The procedure is repeated so that the classifier is retrained using the modified training set.

    摘要翻译: “主动学习”方法训练用于基于视图的对象识别的紧凑分类器。 该方法主动生成自己的训练数据。 具体来说,在迭代训练过程中控制合成训练图像的生成。 在低维渲染空间中找到有价值的和/或信息的对象视图,然后迭代地添加到训练集中。 在每次迭代中,都会生成新的视图。 通过在渲染参数的低维空间中搜索分类器的输出的局部最小值来迭代地生成稀疏训练集。 生成初始训练集。 使用训练集训练分类器。 在低维渲染空间中发现分类器输出的局部最小值。 图像呈现在本地最小值。 新渲染的图像被添加到训练集中。 重复该过程,使得使用修改的训练集来重新训练分类器。

    Database access computer language
    3.
    发明申请
    Database access computer language 审中-公开
    数据库访问计算机语言

    公开(公告)号:US20080077602A1

    公开(公告)日:2008-03-27

    申请号:US11303656

    申请日:2005-12-16

    IPC分类号: G06F17/30

    CPC分类号: G06F16/2428

    摘要: An operating system independent computer language to enable non-technical users to manipulate data from within large pre-existing files or databases with limited involvement of programmers. This language can also be used to distribute the processing for such file manipulations across any group of networked computers.

    摘要翻译: 一种操作系统独立的计算机语言,使非技术用户能够在程序员的参与有限的情况下操纵大型预先存在的文件或数据库中的数据。 该语言也可用于跨任何联网计算机组分发这种文件操纵的处理。

    Object recognition with 3D models
    9.
    发明授权
    Object recognition with 3D models 有权
    3D模型对象识别

    公开(公告)号:US08422797B2

    公开(公告)日:2013-04-16

    申请号:US12827185

    申请日:2010-06-30

    IPC分类号: G06K9/62

    摘要: An “active learning” method trains a compact classifier for view-based object recognition. The method actively generates its own training data. Specifically, the generation of synthetic training images is controlled within an iterative training process. Valuable and/or informative object views are found in a low-dimensional rendering space and then added iteratively to the training set. In each iteration, new views are generated. A sparse training set is iteratively generated by searching for local minima of a classifier's output in a low-dimensional space of rendering parameters. An initial training set is generated. The classifier is trained using the training set. Local minima are found of the classifier's output in the low-dimensional rendering space. Images are rendered at the local minima. The newly-rendered images are added to the training set. The procedure is repeated so that the classifier is retrained using the modified training set.

    摘要翻译: 主动学习方法训练用于基于视图的对象识别的紧凑分类器。 该方法主动生成自己的训练数据。 具体来说,在迭代训练过程中控制合成训练图像的生成。 在低维渲染空间中找到有价值的和/或信息的对象视图,然后迭代地添加到训练集中。 在每次迭代中,都会生成新的视图。 通过在渲染参数的低维空间中搜索分类器的输出的局部最小值来迭代地生成稀疏训练集。 生成初始训练集。 使用训练集训练分类器。 在低维渲染空间中发现分类器输出的局部最小值。 图像呈现在本地最小值。 新渲染的图像被添加到训练集中。 重复该过程,使得使用修改的训练集来重新训练分类器。

    TEACHING AND LEARNING SYSTEM
    10.
    发明申请
    TEACHING AND LEARNING SYSTEM 审中-公开
    教学与学习制度

    公开(公告)号:US20110212430A1

    公开(公告)日:2011-09-01

    申请号:US12875023

    申请日:2010-09-02

    IPC分类号: G09B5/00

    CPC分类号: G09B5/06 G09B7/00

    摘要: A teaching and learning system includes a data store and a server computing device. The server computing device is programmed to retrieve digital data from the data store and to generate and transfer digital data across a network to user computing devices associated with users. The digital data is configured to be interpreted by the user computing devices to display to the users an interactive web site, the web site including a plurality of learning packets. Each learning packet includes a title and multiple content sections. The title includes a text description of a topic associated with an academic topic. The multiple content sections include at least one content window, where each content window includes content having a content type selected by the author of the learning packet from a plurality of different available content types. The content of each content section includes information to teach the user about the topic identified in the title.

    摘要翻译: 教学系统包括数据存储和服务器计算设备。 服务器计算设备被编程为从数据存储器检索数字数据,并且通过网络生成和传送数字数据到与用户相关联的用户计算设备。 数字数据被配置为由用户计算设备解释以向用户显示交互式网站,网站包括多个学习分组。 每个学习包包括标题和多个内容部分。 标题包括与学术主题相关的主题的文本描述。 多个内容部分包括至少一个内容窗口,其中每个内容窗口包括具有来自多个不同可用内容类型的学习分组的作者所选择的内容类型的内容。 每个内容部分的内容包括教导用户关于标题中标识的主题的信息。