Abstract:
An ignition apparatus for an internal combustion engine is provided which includes a state-of-discharge determiner working to determine whether a center and a ground electrode of a spark plug are electrically conducting with each other or insulated from each other. When the center and ground electrodes are determined to be conducted with each other, the ignition apparatus alters controlled conditions of a high-frequency power supply which supplies a high-frequency power to the spark plug so as to decrease an average of a primary voltage outputted from the high-frequency power supply to the spark plug, thereby reducing an actual current flowing between the center and ground electrodes of the spark plug. This eliminates the risk of mechanical wear of the center and ground electrodes which usually arises from the flow of high current between the center and ground electrodes, thus resulting in an increase in service life of the spark plug.
Abstract:
A spark plug for an internal combustion engine has a housing, an insulator, a center electrode, a ground electrode, and a tip projecting portion. The tip projecting portion has an air guiding surface. In the spark plug, when viewed from a plug axial direction, a straight line that connects the center, in the plug circumferential direction, of the erect portion of the ground electrode and a center point of the center electrode is a straight line. An extension line of the air guiding surface is a straight line. A distance between an intersection, between the straight line and the straight line, and the center point of the center electrode is a (positive towards the side moving away from the erect portion. An angle formed by the straight line and the straight line is b. A diameter of the housing is D. At this time, all of b≧−67.8×(a/D)+27.4, b≦−123.7×(a/D)+64.5, −0.4≦(a/D)≦0.4, and 0°
Abstract:
A spark plug for internal combustion engines is provided, where the spark plug includes a cylindrical housing, a cylindrical insulation porcelain part, a center electrode, and a ground electrode. The insulation porcelain is housed in the housing and the center electrode is held inside the insulation porcelain. The ground electrode protrudes from a top end portion of the housing. A spark discharge gap is left between the ground and center electrodes. Further, first to third projections are formed on the top end portion. The first projection is opposed to the ground electrode with the center electrode therebetween. The second projection is closer to the ground electrode than to the first projection. The third projection is closer to the first projection than to the ground electrode.
Abstract:
An ignition device includes: an ignition plug producing plasma discharge between a pair of discharge electrodes of an ignition plug; an ignition coil provided with a primary coil and a secondary coil, the secondary coil applying voltage between the pair of discharge electrodes; a voltage applying unit applying alternating current voltage to the primary coil, a frequency of the alternating current voltage being set to produce voltage resonance in a circuit including the ignition plug and the secondary coil. The voltage applying unit sets an output period of the alternating current voltage to be longer than a first period at which a partial breakdown start to occur at the pair of discharge electrodes, and shorter than a second period at which a total breakdown occurs at the pair of discharge electrodes, when an air/fuel ratio is lower than a predetermined threshold.
Abstract:
An ignition device includes a center electrode, a center dielectric covering the center electrode, a ground electrode disposed so as to form a discharge space with the center dielectric, and a high energy source for applying an AC voltage between the center electrode and the ground electrode to generate a streamer discharge. A distal end portion of the center electrode projects beyond a distal end of the ground electrode to an inside of the combustion chamber of an internal combustion engine to make a dielectric discharge portion. The ground electrode is formed with an airflow inlet and en airflow outlet at a lateral portion thereof for enabling an in-cylinder airflow to be introduced into the discharge space. A distal end portion of the ground electrode projects radially inward to make a ground electrode projecting portion so that a discharge space narrow portion is formed with the dielectric discharge portion.
Abstract:
A spark plug for an internal combustion engine includes a ground electrode, an insulator held inside the ground electrode, and a center electrode held inside the insulator. When a segment of a line extending in a plug radial direction to connect an arbitrary start point on a surface of the ground electrode and an outer peripheral surface of the insulator is a line segment H, a point of intersection between the line segment H and the outer peripheral surface of the insulator is an intersection point K, a length of the line segment H is L1, and an axial distance between the intersection point K and the distal end of the insulator is L2, the ground electrode is provided on the surface thereof with a shortest discharge forming portion as the start point along a plug circumferential direction at which a value of (L1+L2) becomes minimum.
Abstract:
A spark plug 1 includes a housing 2, an insulator 3, a center electrode 4 held inside the insulator 3 such that a distal end portion 41 protrudes, a ground electrode 5 including a standing portion 51 and an opposing portion 52, and a guide member 22 that has a guide surface 221 facing the standing portion 51 of the ground electrode 5 and functions to guide a flow of an air-fuel mixture in a combustion chamber of an internal combustion engine to a spark discharge gap G formed between the center electrode 4 and the opposing portion 52 of the ground electrode 5. The opposing portion 52 of the ground electrode 5 has an opposing surface 521 that opposes the center electrode 4, a back surface 522 on the opposite axial side to the opposing surface 521, and a pair of side surfaces 523 and 524 that connect the opposing surface 521 and the back surface 522. Of the pair of side surfaces 523 and 524, at least the side surface 523 on the guide member 22 side is formed so as to make an obtuse angle with the opposing surface 521.
Abstract:
An ignition system for an internal combustion engine includes a discharge portion of the center electrode in which a part thereof is surrounded by a bottom portion and a tubular tip portion of the center dielectric, the part of the discharge portion and the tubular tip portion are projected into a combustion chamber of the internal combustion engine from a substantially annular tip portion of the ground electrode that opens to the combustion chamber at a distal end of the ground electrode, a diameter-changing portion formed by reducing a diameter of a part of the tubular tip portion in a radial direction gradually as approaching toward a tip thereof, and a thin-walled portion formed by reducing a thickness of the tip of the tubular tip portion.
Abstract:
A barrier discharge ignition apparatus has a tip end exposed to a combustion chamber of an internal combustion engine and, when subjected to a high-frequency high-voltage AC burst, generates streamer discharges for igniting a fuel/air mixture in the combustion chamber. A central electrode of the apparatus, covered by a dielectric layer and coaxially enclosed in a ground electrode, extends into the combustion chamber to a greater distance than the ground electrode. An electrode portion close to the tip end of the inner periphery of the ground electrode protrudes towards the dielectric layer, for creating a localized high-density electric field. The streamer discharges thereby enter both the to combustion chamber and also a discharge chamber of the ignition apparatus.
Abstract:
In an ignition device, a base section of a discharge chamber is formed by a part of a central dielectric body. A front section of a ground electrode and a front end section of the central dielectric body are projected toward a combustion chamber of a head cylinder of an internal combustion engine by a predetermined height which is measured from a top ceiling wall of the head cylinder. The predetermined height of the front end section of the central dielectric body projected into the inside of the head cylinder is the same or higher than the predetermined height of the front end section of the ground electrode projected into the inside of the head cylinder. The predetermined height of the front end section of the ground electrode is within a range of 3 mm to 25 mm.