Abstract:
An improved apparatus for injecting and igniting fuel in an internal combustion engine includes a nozzle with a bore and a tip at a distal end. The bore includes a longitudinal axis and an annular valve seat. A needle reciprocates within the bore and in combination with the annular valve seat forms an injection valve where in a closed position the needle abuts the annular valve seat and in an open position the needle is spaced apart from the annular valve seat. A retainer axially protrudes from the tip of the nozzle along the longitudinal axis thereof whereby an annular mixing space extends between the retainer and the tip of the nozzle. There is an igniter secured to the nozzle that includes a positive-ignition source forming an ignition zone within a portion of the annular mixing space. Nozzle arrangements include those with both pilot hole and main holes in the nozzle extending between the plenum and outside the nozzle where the main hole longitudinal axis bypasses the retainer and a pilot fuel jet from the pilot hole(s) is retained and redirected such that an ignitable fuel-air mixture is formed within the annular mixing space. Nozzle arrangements also include nozzles with a plurality of main holes and no separate pilot holes in which the main longitudinal axis bypasses the retainer such that a main fuel jet is scraped by the retainer and scraped fuel is retained and redirected such that an ignitable fuel-air mixture is formed within the annular mixing space. The igniter is actuated to ignite the ignitable fuel-air mixtures.
Abstract:
A hydrogen engine in which hydrogen gas is supplied into a combustion chamber as fuel, comprises: an injector for injecting hydrogen gas; a pressure accumulation chamber communicating with an injection hole of the injector; a communication hole communicating with the pressure accumulation chamber and the combustion chamber; and a pressure accumulation chamber defining portion provided between the injector and the combustion chamber and defining the pressure accumulation chamber and the communication hole. The pressure accumulation chamber defining portion is formed separately from the injector and has a thermal conductivity equal to or higher than a thermal conductivity of a combustion chamber wall defining the combustion chamber.
Abstract:
An exothermic cutting rod comprising an ignition assembly portion and a main portion. The main portion may comprise a plurality of fuel rods and a rod housing that is configured to allow a flow of oxygen to the ignition assembly portion. The ignition assembly portion may comprise an ignition fuel housing and an ignition fuel, which is entirely contained within said exothermic cutting rod. The ignition fuel housing may have one or more windows that are configured to allow a heat source to ignite the ignition fuel, which then in turn ignites the fuel rods.
Abstract:
The present invention pertains to a spark plug for an internal combustion engine, comprising a metal outer shell extending in a longitudinal direction from a proximal end to a distal tip end configured to be oriented towards a combustion chamber, said outer shell comprising a fixation portion for attachment of the spark plug to a metal sleeve of the internal combustion engine and arranged at a region proximal of the tip end, wherein the outer shell furthermore comprises a first contact surface arranged at a region distal of the fixation portion and configured to contact a distal end of the sleeve, when the spark plug is attached to the sleeve.
Abstract:
An auxiliary chamber (51) having a spark plug (54) and an auxiliary fuel injector is formed at the central part of the top surface of the main combustion chamber (2). When making an air-fuel mixture in the auxiliary chamber (51) burn by the spark plug (54), an air-fuel mixture in the main combustion chamber (2) is made to burn by jet flames ejected from the communicating holes (52). The injection ports of the auxiliary fuel injector (53) are oriented toward a tumble flow inflow peripheral region (R) which is located on the peripheral part of the end portion of the auxiliary chamber (51) at a place located on a side where the tumble flow W flows in from the communicating holes (52). When the tumble flow (W) is made to be generated in the main combustion chamber (2) by the tumble flow control valve (48), auxiliary fuel (QF) is injected from the auxiliary fuel injector (53) toward the tumble flow inflow peripheral region (R) of the auxiliary chamber (51).
Abstract:
A system composed of a water sleeve and a spark plug for an internal combustion engine. The spark plug has a supply passage, a center conductor, an insulator surrounding the center conductor, and a metallic body surrounding the insulator. A center electrode and at least one ground electrode form a spark air gap. In the region of its front end, the spark plug has an external thread for screwing the spark plug into a component of the internal combustion engine and has at least one discharge opening of the supply passage. The spark plug, at its front end, has, attached to the body, a sleeve that contains the external thread; the body has, on its outside, at least one groove that forms a section of the supply passage; and the sleeve has a heat conducting section that contains at least a part of the external thread and that is in contact with the body and covers at least portions of the groove.
Abstract:
An internal combustion engine has fuel injectors for a first fuel and separate fuel injector-igniters for a second fuel. The first fuel may be a compression-ignition fuel such as diesel fuel while the second fuel is a lower cetane fuel that requires external energy for controlled ignition. For example, the second fuel may be natural gas. Such engines have applications in a wide range of fields, particularly those fields requiring large-displacement slow- and medium-speed engines. Such engines are particularly well adapted for use in railway locomotives. A locomotive equipped with such an engine may operate primarily on natural gas, and thereby take advantage of the significant price difference between natural gas and diesel fuel, while permitting switch over to operation on 100% diesel fuel.
Abstract:
The present disclosure is directed to fuel injectors that provide efficient injection, ignition, and combustion of various types of fuels. One example of such an injector can include a sensor that detects one or more conditions in the combustion chamber. The injector can also include an acoustical force generator or modifier that is responsive to the sensor and can be configured to (a) induce vibrations in the fuel in the injector body and/or in the combustion chamber, (b) induce vibrations in air in the combustion chamber, (c) induce vibrations in a valve driver or other injector component to actuate a flow valve, and/or (d) control patterning of fuel injected into the combustion chamber.
Abstract:
Methods, systems, and devices are disclosed for injecting a fuel using Lorentz forces. In one aspect, a method to inject a fuel includes distributing a fuel between electrodes configured at a port of a chamber, generating an ion current of ionized fuel particles by applying an electric field between the electrodes to ionize at least some of the fuel, and producing a Lorentz force to accelerate the ionized fuel particles into the chamber. In some implementations of the method, the accelerated ionized fuel particles into the chamber initiate a combustion process with oxidant compounds present in the chamber. In some implementations, the method further comprises applying an electric potential on an antenna electrode interfaced at the port to induce a corona discharge into the chamber, in which the corona discharge ignites the ionized fuel particles within the chamber.
Abstract:
The inventive subject matter provides apparatus, systems and methods for treating and delivering a fuel to a combustion chamber of an engine in order to improve efficiency of the engine. In one aspect of the invention, a fuel injector that cooperates with an internal combustion engine to combust a first fuel to produce power is presented. The fuel injector includes a fuel inlet, a pre-conditioning vortex chamber, and an excitation chamber. The fuel injector includes a vortex chamber that conforms a pulsed amount of the first fuel to produce a vortex that includes a coherent dynamic pressure wave. The fuel injector also includes an excitation mechanism that at least partially ignites the fuel.