Abstract:
A method for forming and passivating a tungsten layer, including: a) depositing, by PVD deposition, a tungsten layer on a substrate; and b) depositing by PVD deposition, a tungsten oxide passivation layer on the tungsten layer, by reactive sputtering in a plasma containing dioxygen, the tungsten oxide layer as deposited being amorphous and having a resistivity of between 5×10−2 and 5×10−3 O·cm, the substrate being kept in an inert atmosphere between a) and b).
Abstract:
A process for obtaining a bonding surface for direct bonding includes: a) providing a substrate based on a sintered metal having a base surface with an RMS roughness lower than 6 nanometres and a PV roughness lower than 100 nanometres; b) bombarding the base surface with ionic species; c) depositing a metal layer on the base surface; and d) carrying out a mechanical and/or chemical polish of an exposed surface of the metal layer. A structure including a substrate based on a sintered metal the base surface of which is at least partially formed from a metal including ionic species implanted by bombardment of the base surface, and a metal layer of identical chemical composition to that of the metal base substrate and including a bonding surface with an RMS roughness lower than 0.6 nanometres and a PV roughness lower than 10 nanometres is also provided.
Abstract:
A bonding between a first substrate and a second substrate, the method includes the steps of: a) providing the first substrate and the second substrate, b) forming a first bonding layer having tungsten oxide on the first substrate and a second bonding layer having tungsten oxide on the second substrate, at least one of the first bonding layer and of the second bonding layer including a third element M so as to form an MWxOy-type alloy, the atomic content of M in the composition of the alloy being between 0.5 and 20% and preferably between 1 and 10%, c) carrying out a direct bonding between the first bonding layer and the second bonding layer, and d) performing a heat treatment at a temperature greater than 250° C.
Abstract:
A method for assembling a first substrate and a second substrate via metal adhesion layers, the method including: depositing, on a surface of each of the first and second substrates, a metal layer with a thickness controlled to limit surface roughness of each of the deposited metal layers to below a roughness threshold; exposing the metal layers deposited on the surface of the first and second substrates to air; directly adhering the first and second substrates by placing the deposited metal adhesion layers in contact, the surface roughness of the contacted layers being that obtained at an end of the depositing. The adhesion can be carried out in the air, at atmospheric pressure and at room temperature, without applying pressure to the assembly of the first and second substrates resulting from directly contacting the deposited metal adhesion layers.
Abstract:
A manufacturing method including supplying a first substrate including a first face designated front face, the front face being made of a III-V type semiconductor, supplying a second substrate, forming a radical oxide layer on the front face of the first substrate by executing a radical oxidation, assembling, by a step of direct bonding, the first substrate and the second substrate so as to form an assembly including the radical oxide layer intercalated between the first and second substrates, executing a heat treatment intended to reinforce the assembly interface, and making disappear, at least partially, the radical oxide layer.
Abstract:
A method includes a) Providing a first substrate covered by a metal layer and a second substrate covered by a metal layer, b) Bringing into direct contact the metal layers so as to form a bonding interface having metal material bridges separated by cavities which are fluidly connected to each other, d) Immersing the bonding interface in an oxidizing fluid so as to form a metal oxide which fills at least in part the cavities and metal/metal oxide/metal contact areas. A structure is also provided having a first substrate, a first metal layer, a second metal layer forming a bonding layer with the first metal layer, and a second substrate, the bonding interface having: metal material bridges separated by cavities, a metal oxide partially filling the cavities, and metal/metal oxide/metal contact areas.
Abstract:
The method is carried out of a first substrate having a first layer made of a first material with a second substrate having a second layer made of a second material, the first material and the second material being of different natures and selected from alloys of elements of columns III and V, the method having the steps of: a) providing the first substrate and the second substrate, b) bringing the first substrate into contact with the second substrate so as to form a bonding interface between the first layer and the second layer, c) performing a first heat treatment at a first predefined temperature, d) thinning one of the substrates, e) depositing, at a temperature less than or equal to the first predefined temperature, a barrier layer, on the thinned substrate, and f) performing a second heat treatment at a second predefined temperature, greater than the first predefined temperature.
Abstract:
A method for assembling a first substrate and a second substrate by metal-metal direct bonding, includes providing a first layer of a metal at the surface of the first substrate and a second layer of the metal at the surface of the second substrate, the first and second metal layers having a tensile stress (σi) between 30% and 100% of the tensile yield strength (σe) of the metal; assembling the first and second substrates at a bonding interface by directly contacting the first and second tensile stressed metal layers; and subjecting the assembly of the first and second substrates to a stabilization annealing at a temperature lower than or equal to a temperature threshold beyond which the first and second tensile stressed metal layers are plastically compressively deformed.