Abstract:
Provided herein is a composite, comprising: a polymer host selected from the group consisting of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polypropylene (PP), polyurethane, polycaprolactone (PCL), polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), and polyoxymethylene (POM); and a guest molecule comprising hyaluronic acid; wherein the guest molecule is disposed within the polymer host, and wherein the guest molecule is covalently bonded to at least one other guest molecule. Also provided herein are methods for forming the composite, and blood-contracting devices made from the composite, such as heart valves and vascular grafts.
Abstract:
Provided herein is a composite, comprising: a polymer host selected from the group consisting of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and polypropylene (PP), polyurethane, polycaprolactone (PCL), polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), and polyoxymethylene (POM); and a guest molecule comprising hyaluronic acid; wherein the guest molecule is disposed within the polymer host, and wherein the guest molecule is covalently bonded to at least one other guest molecule. Also provided herein are methods for forming the composite, and blood-contracting devices made from the composite, such as heart valves and vascular grafts.
Abstract:
The present disclosure provides, inter alia, a method of producing an outer layer material for forming into a structure and that comprises an entanglement having a hydrophobic polymer host and a hydrophilic guest, including in one embodiment the steps of: intermingling cloaked hydrophilic guest complexes with the hydrophobic host; crosslinking molecules of the guest with the guest; and performing a hydrolysis reaction.
Abstract:
Provided herein is a polymeric material comprising a polymer host; and a guest molecule comprising a glycosaminoglycan; wherein the guest molecule is disposed within the polymer host, and wherein the guest molecule is covalently bonded to at least one other guest molecule. In some embodiments, the polymer host comprises a silicone-based polymer. In other embodiments, the glycosaminoglycan is chosen from hyaluronic acid and derivatives thereof.
Abstract:
Provided herein is a composite, comprising: a polymer host selected from the group consisting of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and polypropylene (PP), polyurethane, polycaprolactone (PCL), polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), and polyoxymethylene (POM); and a guest molecule comprising hyaluronic acid; wherein the guest molecule is disposed within the polymer host, and wherein the guest molecule is covalently bonded to at least one other guest molecule. Also provided herein are methods for forming the composite, and blood-contracting devices made from the composite, such as heart valves and vascular grafts.
Abstract:
Provided herein is a composite, comprising: a polymer host selected from the group consisting of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polypropylene (PP), polyurethane, polycaprolactone (PCL), polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), and polyoxymethylene (POM); and a guest molecule comprising hyaluronic acid; wherein the guest molecule is disposed within the polymer host, and wherein the guest molecule is covalently bonded to at least one other guest molecule. Also provided herein are methods for forming the composite, and blood-contracting devices made from the composite, such as heart valves and vascular grafts.
Abstract:
An outer layer having an entanglement comprising an intermingling of cloaked hydrophilic guest and a hydrophobic polymer host, wherein molecules of the guest have been crosslinked with each other. Under certain circumstances, using complexes of the guest may be desirable or even necessary. The intermingling of the guest and host includes a physical tangling, whether it also comprises crosslinking by primary bonding (e.g., chemical/covalent bonding) there-between. Also a method of producing an outer layer having such an entanglement, including the steps of: temporarily cloaking at least a portion of the hydrophilic groups of the guest; intermingling at least a portion of the cloaked groups with a porous polymeric structure by diffusing the guest with cloaked groups into at least a portion of the structure's pores; within the pores, crosslinking at least a portion of the molecules of the guest with the guest; and removing the cloaking. Cloaking may be performed by silylation or acylation. Intermingling may be performed by producing a mixture of guest and host (whether in solution, powdered, granular, etc., form); next, a crosslinking of the guest with itself is performed; then, the mixture is molded into the outer layer.
Abstract:
The present disclosure provides, inter alia, a method of producing an outer layer material for forming into a structure and that comprises an entanglement having a hydrophobic polymer host and a hydrophilic guest, including in one embodiment the steps of: intermingling cloaked hydrophilic guest complexes with the hydrophobic host; crosslinking molecules of the guest with the guest; and performing a hydrolysis reaction.
Abstract:
Provided herein is a polymeric material comprising a polymer host; and a guest molecule comprising a glycosaminoglycan; wherein the guest molecule is disposed within the polymer host, and wherein the guest molecule is covalently bonded to at least one other guest molecule. In some embodiments, the polymer host comprises a silicone-based polymer. In other embodiments, the glycosaminoglycan is chosen from hyaluronic acid and derivatives thereof.
Abstract:
The present invention relates to polymeric materials including a glycosaminoglycan networked with a polyolefin-containing polymer. The present invention also relates to hydrogels containing the polymeric materials. The present invention further relates to methods of synthesizing the polymeric materials and hydrogels of the present invention.