摘要:
A bidirectional semiconductor switching device includes a semiconductor substrate having first and second device terminals on opposite faces thereof, a thyristor in the substrate for providing regenerative conduction in a first direction, between the first device terminal and the second device terminal, and an insulated-gate bipolar junction transistor (IGBT) in the substrate for providing nonregenerative conduction in a second opposite direction, between the second device terminal and the first device terminal. In particular, the switching device includes first and second adjacent trenches therein at a face and respective first and second insulated-gate field effect transistors (IGFETs) in the trenches for providing gate-controlled turn-on and turn-off of the thyristor and the IGBT, by being electrically connected in series therewith.
摘要:
A method for forming a p-n junction in silicon carbide includes the steps of amorphizing a portion of a monocrystalline silicon carbide substrate, implanting dopant ions into the amorphous portion of the substrate and then recrystallizing the amorphous portion to thereby form a substantially monocrystalline region including the dopant ions. In particular, the amorphizing step includes the steps of masking an area on the face of the monocrystalline silicon carbide substrate and then directing electrically inactive ions to the masked area so that an amorphous region in the substrate is formed. Accordingly, the amorphous region has sidewalls extending to the face that are substantially orthogonal to the bottom edge of the amorphous region. Once the amorphized region is defined, electrically active dopant ions are implanted into the amorphous region. The dopant ions are then diffused into the amorphous region and become uniformly distributed. Next, the doped amorphized region is recrystallized to obtain a substantially monocrystalline doped region. If the region surrounding the recrystallized region are of opposite conductivity type, a vertically walled p-n junction is formed.
摘要:
An emitter switched thyristor with base resistance control for preventing parasitic latch-up includes a P-N-P-N main thyristor with an N.sup.+ floating emitter for MOS-gated controlled turn-on and a lateral P-channel MOSFET for shunting hole current in a second base region to a P.sup.+ diverting region electrically connected to the cathode. The P-channel MOSFET is enabled by the application of a negative gate voltage to form a P-type inversion layer between the second base region and the P.sup.+ diverter region, thus reducing the resistance between the cathode and the second base region and raising the holding current of the emitter switched thyristor to above the operating current level. The formation of an alternative current path to the cathode has the further effect of reducing the forward bias across the base-emitter junction of an adjacent parasitic thyristor to thereby prevent the sustained regenerative action of the parasitic thyristor.
摘要翻译:具有用于防止寄生闩锁的基极电阻控制的发射极开关晶闸管包括具有用于MOS门控控制导通的N +浮置发射极的PNPN主晶闸管和用于在第二基极区中的分流电流的侧向P沟道MOSFET P +转移区电连接到阴极。 P沟道MOSFET通过施加负栅极电压来使能,以在第二基极区域和P +转移区域之间形成P型反型层,从而减小阴极和第二基极区域之间的电阻并且提高保持 发射极开关晶闸管的电流高于工作电流电平。 形成到阴极的替代电流路径具有减小相邻寄生晶闸管的基极 - 发射极结两端的正向偏压的进一步的效果,从而防止寄生晶闸管的持续再生作用。
摘要:
A semiconductor power rectifier attains low forward voltage drop, low reverse leakage current and improved switching speed by utilizing Schottky contact regions in a p-i-n rectifier along with other means for reducing the required forward bias voltage. In a preferred embodiment, the other means for reducing the required forward bias voltage includes a respective trench between each respective pair of successively spaced current interruption means.
摘要:
In a depletion mode thyristor of the type including a regenerative portion and a non-regenerative portion, the turn-off time for the thyristor is substantially reduced without producing a corresponding increase in the on-resistance of the device by providing a region of relatively low carrier lifetime in the non-regenerative portion of the device in the layer or layers in which charge storage limits the turn-off time for the device. Turn-off of the thyristor is accomplished by pinching off the regenerative portion, thereby diverting current into the low carrier lifetime non-regenerative portion.
摘要:
A MOS-pilot structure for an IGT device consisting of a multiplicity of IGT cells interconnected in a lattice network includes a plurality of pilot emitter electrodes each in electrical contact with only at least one pilot emitter region of a first plurality of the multiplicity of IGT cells and electrically isolated from a common cathode electrode of the multiplicity of IGT cells. The plurality of pilot emitter electrodes are each electrically connected to a contact metal strip deposited on the substrate surface and spaced therefrom by a layer of insulation. The contact metal strip is connected to ground potential through a sense resistor for producing a sense voltage responsive only to the channel currents flowing through the at least one pilot emitter regions; therefore, a MOS pilot structure that utilizes only the MOS channel current to produce the sense voltage to cause turn-off of the IGT device at a large total current is disclosed. The MOS-pilot structure does not suffer from the avalanche breakdown problems during turn-off, that are associated with other prior art IGT pilot structures.
摘要:
An improved lateral insulated gate transistor includes a dual function anode and employs specially configured anode and cathode regions within the drift layer to promote lateral current flow. A vertical diode is disposed between a substrate cathode and anode of the device. Under forward bias conditions, the device exhibits insulated gate controlled conduction, and under reverse bias conditions, the device exhibits conduction between the substrate cathode and anode of the vertical diode.
摘要:
A power field effect device has a high voltage blocking junction which intersects the device surface under the gate electrode. That intersection is a closed plane geometric figure whose center is within the body region of the device rather than in the more heavily doped base region of the device. The figure preferably is everywhere convex and has a maximum width of substantially less than the depletion width, at breakdown, of a corresponding parallel plane junction. The device breakdown voltage is higher than the breakdown voltage of a corresponding junction having a cylindrical edge with a straight axis. In a preferred embodiment, the high voltage blocking junction has a plurality of such intersections with the device surface, each situated beneath a segment of the gate electrode. In a bipolar embodiment, the gate electrode may be omitted.
摘要:
A solid state composite control circuit includes a normally-off gating device connected in series with a normally-on high voltage semiconductor device so that the combination operates as a normally-off high power semiconductor device. The control device is a low voltage semiconductor device, which can switch rapidly with very low gate turn-off current during turn-off of the composite circuit. In a particular example, a low voltage, normally-off, MOSFET is connected in series with the cathode of a high voltage, normally-on FCT. In another example, a low voltage, normally-off, MOSFET is connected in series with the source of a high voltage, normally-on JFET. The composite circuit has a very high turn-off gain as well as high dv/dt and di/dt capability.
摘要:
Hybrid power switching semiconductor devices advantageously integrate IGT and MOSFET structures. The IGT and MOSFET portions of the overall device include respective gate structures each having an associated gate electrode capacitance, and the hybrid device includes a resistance element connecting the IGT and MOSFET gates. The gate structures preferably comprise polysilicon electrodes, and the resistance element comprises a polysilicon bridge formed at the same time during device fabrication. The overall device has only a single gate terminal, which is connected relatively directly to one of the IGT and MOSFET gates, and indirectly through the resistance element to the other of the IGT and MOSFET gates such that an RC time delay network is defined. Two different types of power switching functions are achieved depending upon whether the overall device gate terminal is connected nearer the IGT gate or the MOSFET gate.