Abstract:
A wireless communication device is implemented to include a communication interface and a processor. The processor is configured to process communications associated with the other wireless communication devices within the wireless communication system to determine one or more traffic characteristics of those communications as well as one or more class characteristics of the other wireless communication devices. The processor is configured to classify the communications into one or more access categories based on the one or more traffic characteristics and is configured to classify the other devices into one or more device class categories based on the one or more class characteristics. The processor is then configured to generate one or more channel access control signals based on these classifications. The communication interface of the device is configured to transmit the one or more channel access control signals to one or more of the other devices.
Abstract:
A wireless communication device (e.g., operative within a wireless local area network (WLAN)) coordinates with another wireless communication device to determine which communication parameter(s) to use in at least one FTM frame exchange. In an example of operation, the wireless communication device includes a communication interface and a processor such that the processor receives, via the communication interface, a fine timing measurement (FTM) request frame from the other wireless communication device. The FTM request frame specifies at least one preferred communication parameter for the at least one FTM frame exchange. The processor then determines, based on the FTM request frame, information related to the at least one preferred communication parameter. The wireless communication device generates and transmits a response to the FTM request frame to the other wireless communication device that confirms or overrides the at least one preferred communication parameter.
Abstract:
Explicit feedback format within single user, multiple user, multiple access, and/or MIMO wireless communications. A beamformer provides a first communication to a beamformee, and based thereon, the beamformee may ascertain certain characteristics associated with the type and format of feedback to be provided to the beamformee via a second communication from the beamformee to the beamformer. For example, the first communication may include indication of a current operational mode, such as whether it is in accordance with single-user multiple input multiple output (SU-MIMO) or multi-user multiple-input-multiple-output (MU-MIMO). Also, the first communication may indicate a requested steering matrix's rank to be employed in accordance with subsequent beamforming by the beamformer. Also, additional information such as that pertaining to per-tone SNR values for each respective space-time stream, per-tone or per-sub-band eigen-values, the particular channel width being employed (e.g., 20, 40, 80, or 160 MHz), etc. may be included within the second communication.
Abstract:
Phase rotation for preambles within multiple user, multiple access, and/or MIMO wireless communications. An appropriately designed phase rotation vector and/or appropriately designed cyclic shift delays (CSDs) are applied to respective sub-band components of the preamble. With appropriately designed CSDs, certain fields within the preamble are not modified. For example, a legacy short training field (L-STF) of the preamble is not changed when using appropriately designed CSDs. The respective CSDs may be implemented as integer multiples of a common CSD (e.g., 0×CSD, 1×CSD, 2×CSD, etc. such that one of the values of such a CSD vector may be zero [0], another may be the common CSD itself, etc.). Also, by employing an appropriately designed phase rotation vector and integer multiples of a CSD to a preamble, the respective peak to average power ratio (PAPR) between different respective fields within the preamble may be minimized.
Abstract:
A wireless communication device (e.g., generally, a device) includes a communication interface and a processor configured to support communications with one or more other devices. In an example of operation, the device supports first communications based on a first communication protocol with a first network coordinator device and identifies a second network coordinator device that operates based on a second communication protocol when supporting those first communications. The device also determines one or more operational parameters associated with the second network coordinator device. When one or more conditions is/are appropriate, the device interworks the first communications and second communications based on the second communication protocol with the second network coordinator device. The degree of interworking is based on one or more considerations associated with one or more of the first and second communication protocols, the first and second network coordinator devices, local and/or remote operating conditions, etc.
Abstract:
Aspects of a method and system for data processing in a device with integrated set-top-box and femtocell functionality are provided. Data may be received via an integrated femtocell and set-top-box device and may be synchronously processed, utilizing a common clock, to perform one or more femtocell functions and/or set-top-box functions. The common clock may be derived from global navigation satellite system signals. The integrated femtocell and set-top-box device may convert the received data from a first to a second format. The converted data may be transmitted to a cellular enabled communication device via a cellular transmitter within said integrated femtocell and set-top-box device and/or to a multimedia device via a multimedia interface within said integrated femtocell and set-top-box device. The received data may comprise multimedia content. The integrated femtocell and set-top-box device may be operable to encode, decode, transcode, encrypt, decrypt, scramble, descramble, and present the received multimedia content.
Abstract:
Coordination and synchronization is performed between two or more wireless network managers (e.g., access points (APs)). A first wireless network manager supports first communications with first other wireless communication devices, and a second wireless network manager supports second communications with those first and/or second other wirelessly case devices. The first and second wireless network managers also support communications with one another to coordinate the first and second communications supported with the first and/or second other wireless communication devices. Examples of coordination include selection of which other wireless communication devices are serviced or in communication with which of the first and second wireless network managers, selection of operational parameters (e.g., modulation coding set (MCS), beamforming, frequency band assignment, channel assignment, scheduling information, transmit power, etc.) for the first and second wireless communication devices, synchronization to a common clock (e.g., using timing synchronization function (TSF)).
Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive network data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols, wherein at least one of the plurality of transceivers further transceives control channel data with a remote management unit contemporaneously with the network data via a logical control channel carried using the corresponding one of the plurality of network protocols, wherein the control channel data includes local control data sent to the management unit and remote control data received from the management unit. A processing module processes the remote control data and generates a least one control signal in response thereto, the at least one control signal for adapting at least one of the plurality of transceivers based on the remote control data.
Abstract:
A multiservice communication device includes a plurality of transceivers that wirelessly transceive network data with a corresponding plurality of networks in accordance with a corresponding plurality of network protocols, wherein the plurality of transceivers includes at least one cognitive radio transceiver that is configured based on cognitive transceiver configuration data received from a management unit in communication with the multiservice communication device via a control channel.
Abstract:
A configurable antenna structure includes a plurality of switches, a plurality of antenna components, and a configuration module. The configuration module is operable to configure the plurality of switches and the plurality of antenna components into a first antenna for receiving a multiple frequency band multiple standard (MFBMS) signal. The configuration module continues processing by identify a signal component of interest of a plurality of signal components of interest within the MFBMS signal. The configuration module continues processing by configuring the plurality of switches and the plurality of antenna components into a second antenna.