Abstract:
Disclosed are a color filter substrate and the manufacturing method thereof. The color filter substrate comprises: a substrate (1); a black matrix (3) and a color pixel layer (4, 5, 6) formed on the substrate (1); and a transparent thermally conductive layer (2) disposed between the substrate (1) and the black matrix (3) and between the substrate (1) and the color pixel layer (4, 5, 6).
Abstract:
The present invention provides an array substrate and a method for manufacturing the same, and a display device. In the method for manufacturing the array substrate, a one-time patterning process is employed to form a channel region, a source electrode and a drain electrode of the array substrate. Specifically, a channel region, a source region and a drain region that are consisted of a metal oxide layer are formed via a one-time patterning process, and a heat treatment is carried out on the metal oxide layer of the source region and the drain region in hydrogen gas, thereby forming a conducting source electrode and a conducting drain electrode, respectively. By the technical solution of the invention, the manufacturing process of the array substrate can be simplified, and the manufacturing cost of the array substrate can be lowered.
Abstract:
An array substrate and a method for fabricating the same are disclosed. The method for fabricating the array substrate comprises: forming a pattern of a gate electrode (2) and a common electrode (3) on a substrate (1); forming a pattern of a gate insulating layer (4), an active layer (5), a source/drain electrode layer (6) and a first passivation layer (7), wherein the first passivation layer (7) has a via hole and a thin film transistor (TFT) channel window, and the TFT channel window is located above the gate electrode (2); forming a TFT channel and a pixel electrode (9) with slits, wherein the pixel electrode (9) is connected to one of the source/drain electrode (6) through the via hole. The method is not only simple and stable but also improves the TFT quality.
Abstract:
Disclosed are a color filter substrate and the manufacturing method thereof. The color filter substrate comprises: a substrate (1); a black matrix (3) and a color pixel layer (4, 5, 6) formed on the substrate (1); and a transparent thermally conductive layer (2) disposed between the substrate (1) and the black matrix (3) and between the substrate (1) and the color pixel layer (4, 5, 6).
Abstract:
A liquid crystal display (LCD) panel, a display apparatus and a method for driving the display apparatus capable of providing a LCD panel having good display quality are provided. The liquid crystal display panel comprises: a first substrate (11) and a second substrate (21) opposite to each other, a pixel array provided on the first substrate (11), and a liquid crystal layer (3) between the first substrate (11) and the second substrate (21). The liquid crystal display panel further comprising a first common electrode (12) disposed on a side of the first substrate (11) close to the liquid crystal layer (3) and a second common electrode (22) disposed on a side of the second substrate (21) close to the liquid crystal layer (3). A first pixel electrode (1) and a second pixel electrode (2) are disposed on the first substrate (11). The second common electrode (22) has no overlap region directly facing the first pixel electrode (1) and/or the second pixel electrode (2).
Abstract:
Embodiments of the invention provide a conductive structure, a thin film transistor, an array substrate, and a display device. The conductive structure comprises a copper layer formed of copper or copper alloy; a blocking layer for preventing copper ions of the copper layer from diffusing outward; and a diffusion prevention layer for preventing exterior ions from diffusing to the copper layer and disposed between the copper layer and the blocking layer. The multilayer conductive structure according to an embodiment of the invention can prevent exterior ions from diffusing into a copper layer and prevent copper ions from diffusing outward to reduce ions diffusion that adversely impacts the electricity performance and chemical corrosion resistance of the copper metal layer, and meanwhile can enhance adhesiveness of the conductive structure, which may be helpful for etching/patterning of the multilayer conductive structure.
Abstract:
The present invention provides a method for manufacturing an array substrate comprising: sequentially forming an adhesion enhancement layer, a copper-bearing metal layer and a photoresist layer on a substrate, and respectively forming a reserved region and a removal region by performing exposure and development on the photoresist layer using a mask plate, simultaneously processing the adhesion enhancement layer, the copper-bearing metal layer and the photoresist layer in the removal region by a single wet etching process, to form an adhesion enhancement intermediate layer corresponding to the adhesion enhancement layer, a copper-bearing metal intermediate layer corresponding to the copper-bearing metal layer and the photoresist layer thereon in the reserved region; simultaneously processing the adhesion enhancement intermediate layer, the copper-bearing metal intermediate layer and the photoresist layer by a dry etching process, then stripping off the photoresist layer, to form a patterned adhesion enhancement layer and a patterned copper-bearing metal layer respectively.
Abstract:
An array substrate comprises a first substrate and a plurality of gate lines and a plurality of the data lines provided on the first substrate, the plurality of gate lines and the plurality of the data lines define a plurality of pixel units arranged into a matrix form. Each of the plurality of pixel units comprising: a first electrode having slits, comprising two or more regions where the slits have the different tilt degrees; a second electrode; and a thin film transistor switch, wherein the first electrode and the second electrode are used to form a horizontal electric field for driving liquid crystal molecules, the gate line and the thin film transistor switch are arranged between each two regions of the first electrode, and the thin film transistor switch is controlled by the gate line to operate each region of the first electrode.
Abstract:
An embodiment of the present invention provides an electrowetting display panel which can achieve full-color display, comprising: a first substrate; a second substrate opposite to the first substrate; a plurality of baffle walls disposed on the second substrate and defining a plurality of sub-pixels; an opaque insulating layer disposed on the second substrate, the opaque insulating layer comprising a dielectric layer and opaque liquid elements disposed on the dielectric layer, the opaque insulating layer being capable of displaying black or white under an action of an electric field; a plurality of colored liquid elements corresponding to the individual sub-pixels respectively and disposed between the opaque insulating layer and the first substrate, the colored liquid elements being an electric-conductive or polar light-transmissive color solution.
Abstract:
A production process of a conductive material includes processing graphite oxide into a graphene suspension comprising graphene monolayer nanoflakes, and processing the graphene suspension and metal or metal oxide so as to provide a liquid comprising a composite as the conductive material.