摘要:
Embodiments described herein generally relate to a sequential hydrogenation and nitridization process for reducing interfacial and bulk O atoms in a conductive structure in a semiconductor device. A hydrogenation and plasma nitridization process is performed on a metal nitride layer in a conductive structure prior to deposition of a second metal layer, thereby reducing interfacial oxygen atoms formed on a surface of the metal nitride and oxygen atoms present in the bulk metal layers of the conductive structure. As a result, adhesion of the second metal layer to the metal nitride layer is improved and the electrical resistance of the contact structure is reduced.
摘要:
Embodiments described herein generally relate to a method and apparatus for plasma treating a process chamber. A substrate having a gate stack formed thereon may be placed in a process chamber, and hydrogen containing plasma may be used to treat the gate stack in order to cure the defects in the gate stack. As the result of hydrogen containing plasma treatment, the gate stack has lower leakage and improved reliability. To protect the process chamber from Hx+ ions and H* radicals generated by the hydrogen containing plasma, the process chamber may be treated with a plasma without the substrate placed therein and prior to the hydrogen containing plasma treatment. In addition, components of the process chamber that are made of a dielectric material may be coated with a ceramic coating including an yttrium containing oxide in order to protect the components from the plasma.
摘要:
Embodiments described herein generally relate to a method and apparatus for plasma treating a process chamber. A substrate having a gate stack formed thereon may be placed in a process chamber, and hydrogen containing plasma may be used to treat the gate stack in order to cure the defects in the gate stack. As the result of hydrogen containing plasma treatment, the gate stack has lower leakage and improved reliability. To protect the process chamber from Hx+ ions and H* radicals generated by the hydrogen containing plasma, the process chamber may be treated with a plasma without the substrate placed therein and prior to the hydrogen containing plasma treatment. In addition, components of the process chamber that are made of a dielectric material may be coated with a ceramic coating including an yttrium containing oxide in order to protect the components from the plasma.
摘要:
Embodiments described herein generally relate to a sequential hydrogenation and nitridization process for reducing interfacial and bulk O atoms in a conductive structure in a semiconductor device. A hydrogenation and plasma nitridization process is performed on a metal nitride layer in a conductive structure prior to deposition of a second metal layer, thereby reducing interfacial oxygen atoms formed on a surface of the metal nitride and oxygen atoms present in the bulk metal layers of the conductive structure. As a result, adhesion of the second metal layer to the metal nitride layer is improved and the electrical resistance of the contact structure is reduced.
摘要:
Embodiments described herein generally relate to enable the formation of a metal gate structure with a reduced effective oxide thickness over a similar structure formed via conventional methods. A plasma hydrogenation process followed by a plasma nitridization process is performed on a metal nitride layer in a film stack, thereby removing oxygen atoms disposed within layers of the film stack and, in some embodiments eliminating an oxygen-containing interfacial layer disposed within the film stack. As a result, an effective oxide thickness of the metal gate structure is reduced with little or no accompanying flatband voltage shift. Further, the metal gate structure operates with an increased leakage current that is as little as one quarter the increase in leakage current associated with a similar metal gate structure formed via conventional techniques.
摘要:
Embodiments of the present disclosure relate to methods for processing a substrate. In one embodiment, the method includes forming a dielectric layer over a substrate, wherein the dielectric layer has a dielectric value of about 3.9 or greater, heating the substrate to a first temperature of about 600 degrees Celsius or less by a heater of a substrate support disposed within a process chamber, and incorporating nitrogen into the dielectric layer in the process chamber by annealing the dielectric layer at a second temperature between about 650 and about 1450 degrees Celsius in an ambient nitrogen environment, wherein the annealing is performed on the order of millisecond scale.
摘要:
A sequential plasma process is employed to enable the modification of the work function of a p-type metal layer in a metal gate structure. The sequential plasma process includes a plasma hydrogenation and a plasma process that includes electronegative species. The sequential plasma process is performed on a p-type metal layer in a film stack, thereby replacing suboxides and/or other non-stoichiometrically combined electronegative atoms disposed on or within layers of the film stack with stoichiometrically combined electronegative atoms, such as O atoms. As a result, the work function of the p-type metal layer can be modified without changing a thickness of the p-type metal layer.
摘要:
A sequential plasma process is employed to enable the modification of the work function of a p-type metal layer in a metal gate structure. The sequential plasma process includes a plasma hydrogenation and a plasma process that includes electronegative species. The sequential plasma process is performed on a p-type metal layer in a film stack, thereby replacing suboxides and/or other non-stoichiometrically combined electronegative atoms disposed on or within layers of the film stack with stoichiometrically combined electronegative atoms, such as O atoms. As a result, the work function of the p-type metal layer can be modified without changing a thickness of the p-type metal layer.
摘要:
Embodiments described herein generally relate to enable the formation of a metal gate structure with a reduced effective oxide thickness over a similar structure formed via conventional methods. A plasma hydrogenation process followed by a plasma nitridization process is performed on a metal nitride layer in a film stack, thereby removing oxygen atoms disposed within layers of the film stack and, in some embodiments eliminating an oxygen-containing interfacial layer disposed within the film stack. As a result, an effective oxide thickness of the metal gate structure is reduced with little or no accompanying flatband voltage shift. Further, the metal gate structure operates with an increased leakage current that is as little as one quarter the increase in leakage current associated with a similar metal gate structure formed via conventional techniques.