Abstract:
A method and apparatus for performing nickel salicidation is disclosed. The nickel salicide process typically includes: forming a processed substrate including partially fabricated integrated circuit components and a silicon substrate; incorporating nitrogen into the processed substrate; depositing nickel onto the processed substrate; annealing the processed substrate so as to form nickel mono-silicide; removing the unreacted nickel; and performing a series procedures to complete integrated circuit fabrication. This nickel salicide process increases the annealing temperature range for which a continuous, thin nickel mono-silicide layer can be formed on silicon by salicidation. It also delays the onset of agglomeration of nickel mono-silicide thin-films to a higher annealing temperature. Moreover, this nickel salicide process delays the transformation from nickel mono-silicide to higher resistivity nickel di-silicide, to higher annealing temperature. It also reduces nickel enhanced poly-silicon grain growth to prevent layer inversion. Some embodiments of this nickel salicide process may be used in an otherwise standard salicide process, to form integrated circuit devices with low resistivity transistor gate electrodes and source/drain contacts.
Abstract:
A method for forming shallow trench isolation (STI) with a higher aspect ratio is given. This method allows the formation of narrower and deeper trench isolation regions while avoiding substrate damage due to excessive etching and severe microloading effects. In addition, it yields uniform depth trenches while avoiding problems of etch residue at the bottom of the trench. This method is achieved by using a process where a trench is etched, and an oxide layer grown along the bottom and sidewalls of the trench. Oxygen or field isolation ions are then implanted into the bottom of the trench. A nitride spacer is then formed along the bottom and sidewalls of the trench, followed by an isotropic etch removing the nitride and oxide from the bottom of the trench. An oxide deposition then fills the trench, followed by a planarization step completing the isolation structure.
Abstract:
A method for fabricating a metal-insulator-metal capacitor wherein top metal corner shaping during patterning is eliminated is described. An insulating layer is provided overlying a semiconductor substrate. A composite metal stack is formed comprising a first metal layer overlying the insulating layer, a capacitor dielectric layer overlying the first metal layer, a second metal layer overlying the capacitor dielectric layer, and a hard mask layer overlying the second metal layer. A first photoresist mask is formed overlying the hard mask layer. The composite metal stack is patterned using the first photoresist mask as an etching mask whereby the patterned first metal layer forms a bottom electrode of the capacitor. A portion of the first photoresist mask is removed by plasma ashing to form a second photoresist mask narrower than the first photoresist mask. The hard mask layer is patterned using the second photoresist mask as an etching mask. The second metal layer is patterned using the hard mask layer as an etching mask whereby the second metal layer forms a top electrode of the capacitor to complete fabrication of a metal-insulator-metal capacitor.
Abstract:
A method and apparatus for performing nickel salicidation is disclosed. The nickel salicide process typically includes: forming a processed substrate including partially fabricated integrated circuit components and a silicon substrate; incorporating nitrogen into the processed substrate; depositing nickel onto the processed substrate; annealing the processed substrate so as to form nickel mono-silicide; removing the unreacted nickel; and performing a series procedures to complete integrated circuit fabrication. This nickel salicide process increases the annealing temperature range for which a continuous, thin nickel mono-silicide layer can be formed on silicon by salicidation. It also delays the onset of agglomeration of nickel mono-silicide thin-films to a higher annealing temperature. Moreover, this nickel salicide process delays the transformation from nickel mono-silicide to higher resistivity nickel di-silicide, to higher annealing temperature. It also reduces nickel enhanced poly-silicon grain growth to prevent layer inversion. Some embodiments of this nickel salicide process may be used in an otherwise standard salicide process, to form integrated circuit devices with low resistivity transistor gate electrodes and source/drain contacts.
Abstract:
A novel method for forming a C54 phase titanium disilicide film in the fabrication of an integrated circuit is described. A semiconductor substrate is provided having silicon regions to be silicided. A titanium layer is deposited overlying the silicon regions to be silicided. The substrate is subjected to a first annealing whereby the titanium is transformed to phase C40 titanium disilicide where it overlies the silicon regions and wherein the titanium not overlying the silicon regions is unreacted. The unreacted titanium layer is removed. The substrate is subjected to a second annealing whereby the phase C40 titanium disilicide is transformed to phase C54 titanium disilicide to complete formation of a phase 54 titanium disilicide film in the manufacture of an integrated circuit.
Abstract:
A method for forming an RF inductor of helical shape having high Q and minimum area. The inductor is fabricated of metal or damascened linear segments formed on three levels of intermetal dielectric layers and interconnected by metal filled vias to form the complete helical shape with electrical continuity.
Abstract:
A new method is provided for the creation of contact pads to the poly gate of MOS devices. STI regions are formed, layers of gate oxide, poly and SiN are deposited. The poly gate is patterned and etched leaving a layer of SiN on the surface of the gate. An oxide liner is created, an LDD implant is performed, the gate spacers are created and source/drain region implants are performed. A layer of titanium is deposited and annealed, a salicide etchback is performed to the layer of titanium creating silicided surfaces over the source and drain regions. Inter level dielectric (ILD) is deposited, the layer of ILD is polished down to the SiN layer on the top surface of the gate. The layer of SiN is removed creating a recessed gate structure. A stack of layers of titanium-amorphous silicon-titanium (Ti/Si/Ti) or a layer of WSix is deposited over the layer of ILD filling the recess on top of the gate with Ti/Si/Ti. This Ti/Si/Ti (or WSix) is patterned and etched forming a Ti/Si/Ti stack (or layer of WSix) that partially overlays the layer of ILD while also penetrating the recessed opening of the gate electrode. The layer of Ti/Si/Ti is silicided and forms the contact pad to the gate structure.
Abstract translation:提供了一种用于向MOS器件的多晶硅栅极创建接触焊盘的新方法。 形成STI区,沉积栅氧化层,聚和SiN层。 多晶硅栅极被图案化和蚀刻,在栅极的表面上留下一层SiN层。 产生氧化物衬垫,执行LDD注入,产生栅极间隔物并执行源极/漏极区域注入。 沉积并退火一层钛,对源层和漏极区产生硅化表面的钛层进行自对准硅蚀刻蚀刻。 层间电介质(ILD)被沉积,ILD层被抛光到栅极顶表面上的SiN层。 去除SiN层,产生凹陷的栅极结构。 在TiD / Si / Ti上在栅极顶部填充凹槽的ILD层上沉积一叠钛 - 非晶硅 - 钛(Ti / Si / Ti)或一层WSix层。 该Ti / Si / Ti(或WSix)被图案化和蚀刻形成Ti / Si / Ti叠层(或WSix层),其部分覆盖ILD层,同时也穿过栅电极的凹入开口。 Ti / Si / Ti层被硅化并形成与栅极结构的接触焊盘。
Abstract:
A new method of forming MOS transistors has been achieved. A pad oxide layer is grown. A silicon nitride layer is deposited. Trenches are etched for planned STI. A trench liner is grown inside of the trenches. A trench oxide layer is deposited filling the trenches. The trench oxide layer is polished down to complete the STI. The same silicon nitride layer is patterned to form dummy gates. A gate liner layer is deposited. Ions are implanted to form lightly doped drain junctions. Sidewall spacers are formed adjacent to the dummy gate electrodes and the shallow trench isolations. Ions are implanted to form the drain and source junctions. An epitaxial silicon layer is grown overlying the source and drain junctions. A metal layer is deposited. The epitaxial silicon layer is converted into sulicide to form silicided source and drain contacts. An interlevel dielectric layer is deposited and polished down to the dummy gates. The dummy gates are etched away to form openings for the planned transistor gates. A gate oxide layer is deposited lining the transistor gate openings. A gate electrode layer is deposited to fill the transistor gate openings. The gate electrode layer is patterned to complete the transistor gates.
Abstract:
A method of forming shallow trench isolations is achieved. STI structures so formed do not exhibit isolation oxide thinning due to dishing and erosion problems during the oxide CMP process. A silicon substrate is provided. A first dielectric layer is formed overlying the silicon substrate. A silicon nitride layer is deposited. The silicon nitride layer, the first dielectric layer, and the silicon substrate are etched to form trenches for planned shallow trench isolations. A second dielectric layer is deposited overlying the silicon nitride layer and the trenches. The second dielectric layer is etched to form sidewall spacers inside the trenches. A silicon layer is selectively grown overlying the silicon substrate only where the silicon substrate is exposed in the trenches, and wherein the step of growing is stopped before the silicon layer exceeds the top surface of the silicon nitride layer. A third dielectric layer is deposited overlying the silicon nitride layer, the sidewall spacers, and the silicon layer. The third dielectric layer is polished down to the top surface of the silicon nitride layer to complete the shallow trench isolations where the silicon nitride layer acts as a polishing stop, and the integrated circuit device is completed.
Abstract:
A method to integrate low dielectric constant dielectric materials with copper metallization is described. A metal line is provided overlying a semiconductor substrate and having a nitride capping layer thereover. A polysilicon layer is deposited over the nitride layer and patterned to form dummy vias. A dielectric liner layer is conformally deposited overlying the nitride layer and dummy vias. A dielectric layer having a low dielectric constant is spun-on overlying the liner layer and covering the dummy vias. The dielectric layer is polished down whereby the dummy vias are exposed. Thereafter, the dielectric layer is cured whereby a cross-linked surface layer is formed. The dummy vias are removed thereby exposing a portion of the nitride layer within the via openings. The exposed nitride layer is removed. The via openings are filled with a copper layer which is planarized to complete copper metallization in the fabrication of an integrated circuit device.