Abstract:
Processing chambers including at least one gas reservoir connected to and in fluid communication with the lid through a fast-switching valve and a gas reservoir line are described. Processing methods, for example, etching methods, using the processing chambers are also described.
Abstract:
Embodiments of a gas delivery apparatus for use in a radio frequency (RF) processing apparatus are provided herein. In some embodiments, a gas delivery apparatus for use in a radio frequency (RF) processing apparatus includes: a conductive gas line having a first end and a second end; a first flange coupled to the first end; a second flange coupled to the second end, wherein the conductive gas line extends through and between the first and second flanges; and a block of ferrite material surrounding the conductive gas line between the first and second flanges.
Abstract:
Embodiments of the invention provide methods of depositing a CoOx film at lower processing temperatures and with a higher deposition rate. The methods disclosed herein use cobalt tricarbonyl compounds to form the CoOx film. Both atomic layer deposition and chemical vapor deposition techniques are useful in depositing the CoOx film.
Abstract:
Embodiments of the disclosure relate to methods of selectively depositing a metallic material after forming a flowable polymer film to protect a substrate surface within a feature. A first metal liner is deposited by physical vapor deposition (PVD). The flowable polymer film is formed on the first metal liner on the bottom. A portion of the first metal liner is selectively removed from the top surface and the at least one sidewall. The flowable polymer film is removed. In some embodiments, the cycle of depositing a metal liner, forming a flowable polymer film, removing a portion of the metal liner, and removing the flowable polymer film is repeated at least once. A metal layer is deposited on the plurality of metal liners (e.g., first metal liner and the second metal liner) and the metal layer is free of seams or voids.
Abstract:
Methods for selectively depositing on self-assembled monolayer (SAM) are disclosed. Some embodiments of the disclosure utilize a precursor of a Formula (I), Formula (II), Formula (III), and Formula (IV): RnSi(NR′R″)(4-n) (III), RnSiX(4-n) (IV), wherein R1 and R2 are independently selected from substituted or unsubstituted C1-C20 alkyl, or R1 and R2 form a substituted or unsubstituted C1-C20 cycloalkyl ring, and wherein R3, R4, R5, R6, Rn are independently selected from hydrogen, substituted or unsubstituted C1-C20 alkyl, substituted or unsubstituted C1-C20 alkoxy, and substituted or unsubstituted C1-C20 vinyl, X is a halide selected from Cl, Br, and I, and n is an integer from 1 to 3, to form a self-assembled monolayer (SAM) on a damaged silicon nitride layer to prevent critical dimension blow out of a feature in a silicon nitride layer substrate.
Abstract:
In some embodiments, a method of forming a cobalt layer on a substrate disposed in a process chamber, includes: (a) exposing the substrate to a first process gas comprising a cobalt precursor and a hydrogen containing gas to grow a smooth cobalt layer on a first surface of the substrate and on sidewalls and a bottom surface of a feature formed in the first surface of the substrate; (b) purging the first process gas from the process chamber; and (c) annealing the substrate in a hydrogen atmosphere to fill in voids within the cobalt layer to form a void-free cobalt layer. In some embodiments, plasma treating the substrate in gas under low pressure and/or thermally baking the substrate in gas in an atmosphere under a low pressure, may be performed prior to anneal.
Abstract:
Apparatus and methods for supplying a gas to a processing chamber are described. The apparatus comprises an inlet line and an outlet line, each with two valves, in fluid communication an ampoule. A bypass line connects the inlet valve and outlet valve closest to the ampoule. The apparatus and methods of use allow a precursor residue to be removed from the delivery lines of a processing chamber.
Abstract:
Methods of selectively depositing a metal selectively onto a metal surface relative to a dielectric surface. Methods include reducing a metal oxide surface to a metal surface and protecting a dielectric surface to minimize deposition thereon.
Abstract:
Embodiments of the disclosure relate to methods for selectively removing metal material from the top surface and sidewalls of a feature. The metal material which is covered by a flowable polymer material remains unaffected. In some embodiments, the metal material is formed by physical vapor deposition resulting in a relatively thin sidewall thickness. Any metal material remaining on the sidewall after removal of the metal material from the top surface may be etched by an additional etch process. The resulting metal layer at the bottom of the feature facilitates selective metal gapfill of the feature.
Abstract:
Embodiments of the invention provide methods of processing a substrate having a stack of spaced oxide layers with gaps between the oxide layers. A metallic nucleation layer is formed in the gaps and a cobalt film is deposited on the nucleation layer to form wordlines.