Abstract:
Described herein are precursors and methods for forming silicon-containing films. In one aspect, there is provided a precursor of Formula I: wherein R1 is selected from linear or branched C3 to C10 alkyl group, linear or branched C3 to C10 alkenyl group, linear or branched C3 to C10 alkynyl group, C1 to C6 dialkylamino group, electron withdrawing group, and C6 to C10 aryl group; R2 is selected from hydrogen, linear or branched C1 to C10 alkyl group, linear or branched C3 to C6 alkenyl group, linear or branched C3 to C6 alkynyl group, C1 to C6 dialkylamino group, C6 to C10 aryl group, linear or branched C1 to C6 fluorinated alkyl group, electron withdrawing group, and C4 to C10 aryl group; optionally wherein R1 and R2 are linked together to form ring selected from substituted or unsubstituted aromatic ring or substituted or unsubstituted aliphatic ring; and n=1 or 2.
Abstract:
The present invention provides an organosilicon composition comprising diethoxymethylsilane, a concentration of dissolved residual chloride, and a concentration of dissolved residual chloride scavenger that does not yield unwanted chloride salt precipitate when combined with another composition comprising diethoxymethylsilane.
Abstract:
A stable formulation comprising a silicon containing precursor selected from an alkoxysilane, aryloxysilane, or alkylalkoxysilane and a catalyst compound comprising a haloalkoxyalkylsilane or haloaryloxyalkylsilane wherein the substitutents within the silicon-containing precursor and catalyst compound are the same are described herein. More specifically, the formulation comprises a silicon-containing precursor comprising an alkoxyalkylsilane or aryloxysilane having a formula of Si(OR1)nR24-n and a catalyst comprising haloalkoxyalkylsilane having a formula of XSi(OR1)nR23-n; or a silicon-containing precursor comprising an alkoxysilane or aryloxysilane having a formula of R23-p(R1O)pSi—R3—Si(OR1)pR23-p and a catalyst comprising a haloalkoxyalkylsilane or haloaryloxyalkylsilane having a formula of (R1O)mR22-m(X)Si—R3—Si(OR4)2R5 wherein at least one or all of the R1 and R2 substituents are the same in both the silicon-containing precursor and catalyst compound are described herein. The formulations can be used in semiconductor deposition process, such as for example, a flowable silicon oxide process.
Abstract:
Described herein are precursors and methods for forming silicon-containing films. In one aspect, there is provided a precursor of Formula I: wherein R1 is selected from linear or branched C3 to C10 alkyl group, linear or branched C3 to C10 alkenyl group, linear or branched C3 to C10 alkynyl group, C1 to C6 dialkylamino group, electron withdrawing group, and C6 to C10 aryl group; R2 is selected from hydrogen, linear or branched C1 to C10 alkyl group, linear or branched C3 to C6 alkenyl group, linear or branched C3 to C6 alkynyl group, C1 to C6 dialkylamino group, C6 to C10 aryl group, linear or branched C1 to C6 fluorinated alkyl group, electron withdrawing group, and C4 to C10 aryl group; optionally wherein R1 and R2 are linked together to form ring selected from substituted or unsubstituted aromatic ring or substituted or unsubstituted aliphatic ring; and n=1 or 2.
Abstract:
The present invention provides an organosilicon composition comprising diethoxymethylsilane, a concentration of dissolved residual chloride, and a concentration of dissolved residual chloride scavenger that does not yield unwanted chloride salt precipitate when combined with another composition comprising diethoxymethylsilane.
Abstract:
Described herein are precursors and methods for forming silicon-containing films. In one aspect, there is provided a precursor of Formula I: wherein R1 is selected from linear or branched C3 to C10 alkyl group, linear or branched C3 to C10 alkenyl group, linear or branched C3 to C10 alkynyl group, C1 to C6 dialkylamino group, electron withdrawing group, and C6 to C10 aryl group; R2 is selected from hydrogen, linear or branched C1 to C10 alkyl group, linear or branched C3 to C6 alkenyl group, linear or branched C3 to C6 alkynyl group, C1 to C6 dialkylamino group, C6 to C10 aryl group, linear or branched C1 to C6 fluorinated alkyl group, electron withdrawing group, and C4 to C10 aryl group; optionally wherein R1 and R2 are linked together to form ring selected from substituted or unsubstituted aromatic ring or substituted or unsubstituted aliphatic ring; and n=1 or 2.
Abstract:
Described herein are precursors and methods for forming silicon-containing films. In one aspect, there is provided a precursor of Formula I: wherein R1 is selected from linear or branched C3 to C10 alkyl group, linear or branched C3 to C10 alkenyl group, linear or branched C3 to C10 alkynyl group, C1 to C6 dialkylamino group, electron withdrawing group, and C6 to C10 aryl group; R2 is selected from hydrogen, linear or branched C1 to C10 alkyl group, linear or branched C3 to C6 alkenyl group, linear or branched C3 to C6 alkynyl group, C1 to C6 dialkylamino group, C6 to C10 aryl group, linear or branched C1 to C6 fluorinated alkyl group, electron withdrawing group, and C4 to C10 aryl group; optionally wherein R1 and R2 are linked together to form ring selected from substituted or unsubstituted aromatic ring or substituted or unsubstituted aliphatic ring; and n=1 or 2.
Abstract:
A stable formulation comprising a silicon containing precursor selected from an alkoxysilane, aryloxysilane, or alkylalkoxysilane and a catalyst compound comprising a haloalkoxyalkylsilane or haloaryloxyalkylsilane wherein the substitutents within the silicon-containing precursor and catalyst compound are the same are described herein. More specifically, the formulation comprises a silicon-containing precursor comprising an alkoxyalkylsilane or aryloxysilane having a formula of Si(OR1)nR24-n and a catalyst comprising haloalkoxyalkylsilane having a formula of XSi(OR1)nR23-n; or a silicon-containing precursor comprising an alkoxysilane or aryloxysilane having a formula of R23-p(R1O)pSi—R3—Si(OR1)pR23-p and a catalyst comprising a haloalkoxyalkylsilane or haloaryloxyalkylsilane having a formula of (R1O)mR22-m(X)Si—R3—Si(OR4)2R5 wherein at least one or all of the R1 and R2 substituents are the same in both the silicon-containing precursor and catalyst compound are described herein. The formulations can be used in semiconductor deposition process, such as for example, a flowable silicon oxide process.
Abstract:
A method for forming a silicon-containing film on at least one surface of a substrate by a deposition process selected from a chemical vapor deposition process and an atomic layer deposition process, the method comprising: providing the at least one surface of the substrate in a reaction chamber; introducing at least one organoaminodisilane precursor comprising a Si—N bond, a Si—Si bond, and a Si—H3 group represented by the following Formula I below: wherein R1 and R2 are defined herein; and introducing a nitrogen-containing source into the reactor wherein the at least one organoaminodisilane precursor and the nitrogen-containing source react to form the film on the at least one surface.
Abstract:
Described herein are precursors and methods for forming silicon-containing films. In one aspect, there is provided a precursor of Formula I: wherein R1 is selected from linear or branched C3 to C10 alkyl group, linear or branched C3 to C10 alkenyl group, linear or branched C3 to C10 alkynyl group, C1 to C6 dialkylamino group, electron withdrawing group, and C6 to C10 aryl group; R2 is selected from hydrogen, linear or branched C1 to C10 alkyl group, linear or branched C3 to C6 alkenyl group, linear or branched C3 to C6 alkynyl group, C1 to C6 dialkylamino group, C6 to C10 aryl group, linear or branched C1 to C6 fluorinated alkyl group, electron withdrawing group, and C4 to C10 aryl group; optionally wherein R1 and R2 are linked together to form ring selected from substituted or unsubstituted aromatic ring or substituted or unsubstituted aliphatic ring; and n=1 or 2.