摘要:
The invention provides a semiconductor device which is non-volatile, easily manufactured, and can be additionally written. A semiconductor device of the invention includes a plurality of transistors, a conductive layer which functions as a source wiring or a drain wiring of the transistors, and a memory element which overlaps one of the plurality of transistors, and a conductive layer which functions as an antenna. The memory element includes a first conductive layer, an organic compound layer and a phase change layer, and a second conductive layer stacked in this order. The conductive layer which functions as an antenna and a conductive layer which functions as a source wiring or a drain wiring of the plurality of transistors are provided on the same layer.
摘要:
The invention provides a semiconductor device which is non-volatile, easily manufactured, and can be additionally written. A semiconductor device of the invention includes a plurality of transistors, a conductive layer which functions as a source wiring or a drain wiring of the transistors, and a memory element which overlaps one of the plurality of transistors, and a conductive layer which functions as an antenna. The memory element includes a first conductive layer, an organic compound layer and a phase change layer, and a second conductive layer stacked in this order. The conductive layer which functions as an antenna and a conductive layer which functions as a source wiring or a drain wiring of the plurality of transistors are provided on the same layer.
摘要:
The present invention provides a step in which a channel-length of a TFT can be controlled with higher reproducibility. In addition, the present invention provides a step in which a short channel-length of the TFT can be manufactured. Further, the present invention provides a structure of the TFT in which a current-voltage characteristic can be improved. The present invention refers to a thin film transistor comprising a lamination layer wherein a first conductive film, a first insulating film and a second conductive film are sequentially laminated, a semiconductor film formed so as to be in contact with the side surface of the lamination layer, and a third conductive film covering the semiconductor film through a second insulating film. The first conductive film and the second conductive film are a source electrode and a drain electrode, and a region which is in contact with the first insulating film and the third conductive film is a channel forming region in semiconductor film, and the third conductive film is a gate electrode.
摘要:
The present invention provides a structure of the TFT in which a current-voltage characteristic can be improved. The present invention refers to a thin film transistor comprising a lamination layer wherein a first conductive film, a first insulating film and a second conductive film are sequentially laminated, a semiconductor film formed so as to be in contact with the side surface of the lamination layer, and a third conductive film covering the semiconductor film through a second insulating film. The first conductive film and the second conductive film are a source electrode and a drain electrode, and a region which is in contact with the first insulating film and the third conductive film is a channel forming region in semiconductor film, and the third conductive film is a gate electrode.
摘要:
It is an object to provide techniques for forming a field emission device of a field emission display device with the use of an inexpensive large-sized substrate according to the process that enables improving productivity.A field emission device according to the present invention includes a cathode electrode formed on an insulating surface of a substrate and a convex electron emission portion formed at a surface of the cathode electrode, and the cathode electrode and the electron emission portion include the same semiconductor film. The electron emission portion has a conical shape or a whiskers shape.
摘要:
The present invention provides a structure of the TFT in which a current-voltage characteristic can be improved. The present invention refers to a thin film transistor comprising a lamination layer wherein a first conductive film, a first insulating film and a second conductive film are sequentially laminated, a semiconductor film formed so as to be in contact with the side surface of the lamination layer, and a third conductive film covering the semiconductor film through a second insulating film. The first conductive film and the second conductive film are a source electrode and a drain electrode, and a region which is in contact with the first insulating film and the third conductive film is a channel forming region in semiconductor film, and the third conductive film is a gate electrode.
摘要:
The present invention provides a step in which a channel-length of a TFT can be controlled with higher reproducibility. In addition, the present invention provides a step in which a short channel-length of the TFT can be manufactured. Further, the present invention provides a structure of the TFT in which a current-voltage characteristic can be improved. The present invention refers to a thin film transistor comprising a lamination layer wherein a first conductive film, a first insulating film and a second conductive film are sequentially laminated, a semiconductor film formed so as to be in contact with the side surface of the lamination layer, and a third conductive film covering the semiconductor film through a second insulating film. The first conductive film and the second conductive film are a source electrode and a drain electrode, and a region which is in contact with the first insulating film and the third conductive film is a channel forming region in semiconductor film, and the third conductive film is a gate electrode.
摘要:
A channel-length of a TFT can be controlled with higher reproducibility, and a short channel-length of the TFT can be manufactured. Further, a structure of the TFT having an improved current-voltage characteristic is provided. A thin film transistor has a lamination layer where a first conductive film, a first insulating film and a second conductive film are sequentially laminated, a semiconductor film is formed so as to be in contact with the side surface of the lamination layer, and a third conductive film covers the semiconductor film through a second insulating film. The first conductive film and the second conductive film are a source electrode and a drain electrode, a region which is in contact with the first insulating film and the third conductive film is a channel forming region in the semiconductor film, and the third conductive film is a gate electrode.
摘要:
It is an object to provide techniques for forming a field emission device of a field emission display device with the use of an inexpensive large-sized substrate according to the process that enables improving productivity. A field emission device according to the present invention includes a cathode electrode formed on an insulating surface of a substrate and a convex electron emission portion formed at a surface of the cathode electrode, and the cathode electrode and the electron emission portion include the same semiconductor film. The electron emission portion has a conical shape or a whiskers shape.
摘要:
The present invention provides a step in which a channel-length of a TFT can be controlled with higher reproducibility. In addition, the present invention provides a step in which a short channel-length of the TFT can be manufactured. Further, the present invention provides a structure of the TFT in which a current-voltage characteristic can be improved. The present invention refers to a thin film transistor comprising a lamination layer wherein a first conductive film, a first insulating film and a second conductive film are sequentially laminated, a semiconductor film formed so as to be in contact with the side surface of the lamination layer, and a third conductive film covering the semiconductor film through a second insulating film. The first conductive film and the second conductive film are a source electrode and a drain electrode, and a region which is in contact with the first insulating film and the third conductive film is a channel forming region in semiconductor film, and the third conductive film is a gate electrode.