摘要:
A seat pad is provided. The seat pad includes a base plate, a meddle plate, a foam layer, a cushion member, a fixation plate and a fixation screw. The fixation plate is disposed correspondingly above a meddle region of the meddle plate, the meddle plate is disposed on the cushion member, the cushion member is disposed on the base plate, the fixation screw is disposed through a through hole of the base plate at a meddle region of the base plate and screwed with the fixation plate, and the foam layer is attached on the meddle plate. Whereby, the seat pad is simple in structure and easy to assemble and can obviate pressure of one's hips, and one's blood circulation will not be hindered and uncomfortableness due to sitting for a long time can be obviated.
摘要:
A method, in one embodiment, can include forming a tunnel oxide layer on a substrate. In addition, the method can include depositing via atomic layer deposition a first layer of silicon nitride over the tunnel oxide layer. Note that the first layer of silicon nitride includes a first silicon richness. The method can also include depositing via atomic layer deposition a second layer of silicon nitride over the first layer of silicon nitride. The second layer of silicon nitride includes a second silicon richness that is different than the first silicon richness.
摘要:
A source detection system for detecting wireless communication signals, the system comprising: receiving means for receiving a signal; and processing means arranged to filter the signal to separate it into a plurality of frequency components, determine an energy content for each of the frequency components, calculate a measure of the difference between the energy contents of respective frequency components, and make a determination, from said measure, whether the signal has been transmitted from a source.
摘要:
In accordance with an embodiment of the present invention, a resistive switching device comprises a bottom electrode, a switching layer disposed over the bottom electrode, and a top electrode disposed over the switching layer. The top electrode comprises an alloy of a memory metal and an alloying element. The top electrode provides a source of the memory metal. The memory metal is configured to change a state of the switching layer.
摘要:
A “Text Rectifier” provides various techniques for processing selected regions of an image containing text or characters by treating those images as matrices of low-rank textures and using a rank minimization technique that recovers and removes image deformations (e.g., affine and projective transforms as well as general classes of nonlinear transforms) while rectifying the text or characters in the image region. Once distortions have been removed and the text or characters rectified, the resulting text is made available for a variety of uses or further processing such as optical character recognition (OCR). In various embodiments, binarization and/or inversion techniques are applied to the selected image regions during the rank minimization process to both improve text rectification and to present the resulting images of text to an OCR engine in a form that enhances the accuracy of the OCR results.
摘要:
Methods for fabricating a semiconductor FIN structure with smooth sidewalls and rounded top corners and edges is disclosed. A method includes forming a plurality of semiconductor FIN structures. A sacrificial oxide layer is formed on the top surface and the sidewall surfaces of the plurality of semiconductor FIN structures for rounding the corners and edges between the top surfaces and the sidewall surfaces of the plurality of semiconductor FIN structures. The sacrificial oxide layer is removed with a high selectivity oxide etchant. The plurality of semiconductor FIN structures are annealed in a hydrogen environment. A tunnel oxide is formed over the plurality of semiconductor FIN structures.
摘要:
A “Text Rectifier” provides various techniques for processing selected regions of an image containing text or characters by treating those images as matrices of low-rank textures and using a rank minimization technique that recovers and removes image deformations (e.g., affine and projective transforms as well as general classes of nonlinear transforms) while rectifying the text or characters in the image region. Once distortions have been removed and the text or characters rectified, the resulting text is made available for a variety of uses or further processing such as optical character recognition (OCR). In various embodiments, binarization and/or inversion techniques are applied to the selected image regions during the rank minimization process to both improve text rectification and to present the resulting images of text to an OCR engine in a form that enhances the accuracy of the OCR results.
摘要:
A semiconductor fabrication system and method are presented. A three dimensional multilayer integrated circuit fabrication method can include forming a first device layer and forming a second device layer on top of the first device layer with minimal detrimental heat transfer to the first layer by utilizing a controlled laser layer formation annealing process. A controlled laser crystallization process can be utilized and the controlled laser can include creating an amorphous layer; defining a crystallization area in the amorphous layer, where in the crystallization area is defined to promote single crystal growth (i.e. prevent multi-crystalline growth); and applying laser to the crystallization area, wherein the laser is applied in a manner that prevents undesired heat transfer to another layer.
摘要:
Embodiments of the invention provide memory devices and methods for forming such memory devices. In one embodiment, a method for fabricating a non-volatile memory device on a substrate is provided which includes depositing a first polysilicon layer on a substrate surface, depositing a silicon oxide layer on the first polysilicon layer, depositing a first silicon oxynitride layer on the silicon oxide layer, depositing a silicon nitride layer on the first silicon oxynitride layer, depositing a second silicon oxynitride layer on the silicon nitride layer, and depositing a second polysilicon layer on the second silicon oxynitride layer. In some examples, the first polysilicon layer is a floating gate and the second polysilicon layer is a control gate.