摘要:
A dry etching agent according to the present invention contains (A) a fluorinated propyne represented by the chemical formula: CF3CCX where X is H, F, Cl, Br, I, CH3, CFH2 or CF2H; and either of: (B) at least one kind of gas selected from the group consisting of O2, O3, CO, CO2, COCl2 and COF2; (C) at least one kind of gas selected from the group consisting of F2, NF3, Cl2, Br2, I2 and YFn where Y is Cl, Br or I; and n is an integer of 1 to 5; and (D) at least one kind of gas selected from the group consisting of CF4, CHF3, C2F6, C2F5H, C2F4H2, C3F8, C3F4H2, C3ClF3H and C4F8. This dry etching agent has a small environmental load and a wide process window and can be applied for high-aspect-ratio processing without special operations such as substrate excitation.
摘要:
There is provided according the present invention a process for producing 2-chloro-3,3,3-trifluoropropene, comprising: hydrogenating 1,2-dichloro-3,3,3-trifluoropropene with hydrogen (H2) in the presence of a catalyst having a transition metal and a poisoning substance supported on a support. The present production process is industrially advantageous as the target 2-chloro-3,3,3-trifluoropropene can be obtained with high selectivity and high yield under moderate reaction conditions and with easy waste treatment.
摘要:
A process for dehydrating a hydrofluorocarbon or hydrochlorofluorocarbon, which can be done by simple equipment, and a continuous process of producing 1,3,3,3-tetrafluoropropene using the dehydration process. The dehydration process includes cooling the hydrofluorocarbon or hydrochlorofluorocarbon in gaseous form containing water with a heat exchanger, thereby condensing and liquefying the hydrofluorocarbon or hydrochlorofluorocarbon while freezing and solidifying the water. The 1,3,3,3-tetrafluoropropene production method includes a first step for fluorinating 1-chloro-3,3,3-trifluoropropene with hydrogen fluoride to obtain a mixture of 1,3,3,3-tetrafluoropropene, unreacted 1-chloro-3,3,3-trifluoropropene, hydrogen fluoride, hydrogen chloride and by-products, or dehydrofluorinating 1,1,1,3,3-pentafluoropropane to obtain a mixture of 1,3,3,3-tetrafluoropropene, unreacted 1,1,1,3,3-pentafluoropropane and by-products, a second step for removing acidic components, a third step for dehydrating the 1,3,3,3-tetrafluoropropene by the above dehydration process, and a fourth step for purifying the 1,3,3,3-tetrafluoropropene by distillation.
摘要:
There is provided a method for producing 1,3,3,3-tetrafluoropropene. This method includes dehydrofluorinating 1,1,1,3,3-pentafluoropropane in gas phase in the presence of a zirconium compound-carried catalyst in which a zirconium compound is carried on a metal oxide or activated carbon.
摘要:
Disclosed is a method of purifying (Z)-1-chloro-3,3,3-trifluoropropene of the formula [1], comprising: distilling a mixture containing (Z)-1-chloro-3,3,3-trifluoropropene and 1-chloro-1,3,3,3-tetrafluoropropane (CF3CH2CHClF), wherein the distilling is performed by extractive distillation of the mixture in the coexistence of at least one kind of compound selected from the group consisting of halogenated hydrocarbons of the formula [2], halogenated unsaturated hydrocarbons, nitriles, ketones, carbonates, ethers, esters and alcohols as an extractant [Chem. 8] CFnCl3-nCHXCClFmH2-m [2] where X represents a hydrogen atom (H), a fluorine atom (F) or a chlorine atom (Cl); n represents an integer of 0 to 3; and m represents an integer of 0 to 2.
摘要:
There is provided an azeotrope or azeotrope-like composition containing (A) 1,1,2,2-tetrafluoro-1-methoxyethane and (B) a compound formed of at least one selected from the group consisting of (Z)-1-chloro-3,3,3-trifluoropropene, 2-bromo-3,3,3-trifluoropropene, and (E)-2-bromo-1,3,3,3-tetrafluoropropene.
摘要:
There is provided a method for producing 1,3,3,3-tetrafluoropropene. This method includes dehydrofluorinating 1,1,1,3,3-pentafluoropropane in gas phase in the presence of a zirconium compound-carried catalyst in which a zirconium compound is carried on a metal oxide or activated carbon.
摘要:
The present invention provides a polyol composition for hard polyurethane foam in which HFC-245fa is used as a blowing agent and its vapor pressure is suppressed, and a method for producing a hard polyurethane foam. The polyol composition for hard polyurethane foam comprises at least a polyol compound, a blowing agent, a foam stabilizer and a catalyst, which is mixed with an isocyanate component containing a polyisocyanate compound, followed by foaming and curing to form a hard polyurethane foam, and the blowing agent is 1,1,1,3,3-pentafluoropropane (HFC-245fa) and further comprises at least one compatibilizer selected from the group consisting of DMA, NMP, GBL and MPA, and 1,1,1,3,3-pentafluorobutane (HFC-365mfc) in a predetermined ratio.
摘要:
The invention relates to a method for purifying a crude 1,1,1,3,3-pentafluoropropane (HFC-245fa) containing HFC-245fa and 1-chloro-3,3,3-trifluoro-trans-1-propene (HCFC-1233zd(t)), by distillation. This method is characterized in that the distillation is conducted in the presence of a solvent having a boiling point which is higher than that of HCFC-1233zd(t), thereby to substantially remove HCFC-1233zd(t) from the crude HFC-245fa. This solvent may be selected from carbon chlorides, chlorohydrocarbons, fluorochlorohydrocarbons, saturated hydrocarbons, and mixtures thereof. With the use of this solvent, it becomes possible to substantially easily separate HFC-245fa from HCFC-1233zd(t).
摘要:
A dry etching agent according to the present invention contains (A) a fluorinated propyne represented by the chemical formula: CF3C≡CX where X is H, F, Cl, Br, I, CH3, CFH2 or CF2H; and either of: (B) at least one kind of gas selected from the group consisting of O2, O3, CO, CO2, COCl2 and COF2; (C) at least one kind of gas selected from the group consisting of F2, NF3, Cl2, Br2, I2 and YFn where Y is Cl, Br or I; and n is an integer of 1 to 5; and (D) at least one kind of gas selected from the group consisting of CF4, CHF3, C2F6, C2F5H, C2F4H2, C3F8, C3F4H2, C3ClF3H and C4F8. This dry etching agent has a small environmental load and a wide process window and can be applied for high-aspect-ratio processing without special operations such as substrate excitation.