Abstract:
According to an embodiment, an adder includes first and second wave computing units and a threshold wave computing unit. Each of the first and second wave computing units includes a pair of first input sections, a first wave transmission medium having a continuous film including a magnetic body connected to the first input sections, and a first wave detector outputting a result of computation by spin waves induced in the first wave transmission medium by the signals corresponding to the two bit values. The threshold wave computing unit includes a plurality of third input sections, a third wave transmission medium having a continuous film including a magnetic body connected to the third input sections, and a third wave detector a result of computation by spin waves induced in the third wave transmission medium.
Abstract:
A magnetic memory includes a first magnetic layer, a second magnetic layer, a third magnetic layer, a first intermediate layer, a second intermediate layer, an insulator film, and an electrode. The third magnetic layer is provided between the first magnetic layer and the second magnetic layer in a first direction being perpendicular to the plane of both the first magnetic layer and the second magnetic layer. The insulator film is provided on the third magnetic layer in a second direction perpendicular to the first direction. The electrode is provided on the insulator film so that the insulator is sandwiched between the third magnetic layer and the electrode in the second direction. In addition, a positive voltage is applied to the electrode and a first current passes from the first magnetic layer to the second magnetic layer, thereby writing information to the second magnetic layer.
Abstract:
A magnetic memory element includes a first magnetic layer, a second magnetic layer, a first intermediate layer, a first magnetic wire, a first input unit, and a first detection unit. The first magnetic layer has magnetization fixed. The second magnetic layer has magnetization which is variable. The first intermediate layer is between the first magnetic layer and the second magnetic layer. The first magnetic wire extends in a first direction perpendicular to a direction connecting from the first magnetic layer to the second magnetic layer and is adjacent to the second magnetic layer. In addition, write-in is performed by propagating a first spin wave through the first magnetic wire and by passing a first current from the first magnetic layer toward the second magnetic layer. Read-out is performed by passing a second current from the first magnetic layer toward the second magnetic layer.
Abstract:
A spin wave device comprises a metal layer, a pinned layer, a nonmagnetic layer, a free layer, an antiferromagnetic layer, a first electrode, a first insulator layer, and a second electrode. The pinned layer has a magnetization whose direction is fixed. The free layer has a magnetization whose direction is variable.
Abstract:
A spin wave element includes a substrate, a multilayer, a detecting portion, and two or more input portions. The multilayer having a lamination direction thereof is formed on the substrate and includes a first ferromagnetic layer. The first ferromagnetic layer has magnetization whose direction is in the lamination direction. The detecting portion and the input portions are formed on the multilayer and separated from each other by a first nonmagnetic layer. In addition, a portion of an outer edge of the multilayer viewed from the lamination direction makes a portion of one ellipsoid. The detecting portion and one of the input portions are located on the long axis of the one ellipsoid. The portion of the one ellipsoid is located on a side of one of the input portions.
Abstract:
In an image compressor, a color space converting unit separates an image data into a luminance data and a chrominance data. An image block-dividing unit block-divides each of the luminance and chrominance data separated by the color space converting unit into a plurality of blocks each of which includes adjacent pixels. A luminance threshold value determining unit determines a threshold value for binarizing the luminance data. A luminance binarizing unit binarizes the luminance data using the determined threshold value. A typical value forming unit forms two typical values for each of the block-divided luminance and chrominance data in accordance with the luminance data. A binarized luminance compressing unit encodes the binarized luminance data using dictionaries whose number is smaller than the number of all combinations of the luminance data.
Abstract:
A recording and/or reproducing system has a recording and/or reproducing section and an interfacing unit. The recording and/or reproducing section records and/or reproduces digital data or digital signals on or from a loaded recording medium, such as a magnetic tape. The interfacing unit has a first input/output section for exchanging data and/or signals with an external equipment and a second input/output section for exchanging data and/or signals with the recording and/or reproducing section. The interfacing unit converts data and/or signals supplied from the recording/reproducing section through the second input/output section and sends the converted data and/or signals through the first input/output section to the external information equipment piece, while converting data and/or signals supplied through the first input/output section from the external information equipment piece and sending the converted data and/or signals through the second input/output section to the recording and/or reproducing section.
Abstract:
A spin wave element includes a substrate, a multilayer, a detecting portion, and two or more input portions. The multilayer having a lamination direction thereof is formed on the substrate and includes a first ferromagnetic layer. The first ferromagnetic layer has magnetization whose direction is in the lamination direction. The detecting portion and the input portions are formed on the multilayer and separated from each other by a first nonmagnetic layer. In addition, a portion of an outer edge of the multilayer viewed from the lamination direction makes a portion of one ellipsoid. The detecting portion and one of the input portions are located on the long axis of the one ellipsoid. The portion of the one ellipsoid is located on a side of one of the input portions.
Abstract:
A spin wave device according to an embodiment includes: an input interconnect transmitting an input impulse signal; a multilayer film including a foundation layer; a first magnetic layer formed on the multilayer film and generating spin waves when receiving the input impulse signal, the spin waves propagating through the first magnetic layer; a plurality of input electrodes arranged in a straight line on the first magnetic layer, being connected to the input interconnect, and transmitting the input impulse signal to the first magnetic layer; and a plurality of sensing electrodes sensing the spin waves, being arranged on the first magnetic layer, and being located at different distances from one another from the straight line having the input electrodes arranged therein, and the following equation is satisfied: d=Vg×t0.
Abstract:
Provided is a vehicle upper structure which is capable of increasing, in a simple manner, a section modulus (resistive force) against a bending moment to be imposed on a roof reinforcement by a swinging phenomenon of a gusset occurring when a side impact load input into a center pillar and a roof side rail member is applied to the roof reinforcement from the gusset during a vehicle side impact event, to allow the load to be effectively dispersed to the roof reinforcement. The vehicle upper structure comprises a roof side rail member 4, a roof reinforcement 15 and a gusset 30, wherein an end of the gusset 30 on a side fastened to the roof reinforcement 15 has a shape which inclines with respect to a line L1 oriented in a vehicle front-rear direction, in top plan view.