Abstract:
A biological signal measurement system includes: a providing unit configured to provide a first visual stimulus including a first object visually changing at a predetermined frequency, and a second visual stimulus including a second object; a detection unit configured to detect a biological signal of the subject; a frequency analysis unit configured to perform a frequency analysis on the detected biological signal corresponding to the first visual stimulus, and derive a signal intensity of each frequency component; a determination unit configured to determine a time interval in which the subject has viewed the first visual stimulus, based on a signal intensity of a frequency component corresponding to the frequency; an extraction unit configured to extract the biological signal corresponding to the determined time interval, and corresponding to the second visual stimulus; and an output unit configured to output the extracted biological signal.
Abstract:
A magnetic memory element includes a first magnetic layer, a second magnetic layer, a first intermediate layer, a first magnetic wire, a first input unit, and a first detection unit. The first magnetic layer has magnetization fixed. The second magnetic layer has magnetization which is variable. The first intermediate layer is between the first magnetic layer and the second magnetic layer. The first magnetic wire extends in a first direction perpendicular to a direction connecting from the first magnetic layer to the second magnetic layer and is adjacent to the second magnetic layer. In addition, write-in is performed by propagating a first spin wave through the first magnetic wire and by passing a first current from the first magnetic layer toward the second magnetic layer. Read-out is performed by passing a second current from the first magnetic layer toward the second magnetic layer.
Abstract:
A magnetic memory according to an embodiment includes: a magnetic structure extending in a first direction and having a circular ring-like shape in cross-section in a plane perpendicular to the first direction; a nonmagnetic layer formed on an outer surface of the magnetic structure, the outer surface extending in the first direction; and at least one reference portion formed on part of a surface of the nonmagnetic layer, the surface being on the opposite side from the magnetic structure, the at least one reference portion containing a magnetic material.
Abstract:
A magnetic memory device comprises a magnetic wire extending in a first direction, a pair of first electrodes operable to pass a current through the magnetic wire in the first direction or in an opposite direction to the first direction, a first insulating layer provided on the magnetic wire in a second direction being substantially perpendicular to the first direction, a plurality of second electrodes provided on the first insulating layer and provided at specified interval in the second direction, and a third electrode electrically connected to the plurality of second electrodes.
Abstract:
A spin wave device according to an embodiment includes: an input interconnect transmitting an input impulse signal; a multilayer film including a foundation layer; a first magnetic layer formed on the multilayer film and generating spin waves when receiving the input impulse signal, the spin waves propagating through the first magnetic layer; a plurality of input electrodes arranged in a straight line on the first magnetic layer, being connected to the input interconnect, and transmitting the input impulse signal to the first magnetic layer; and a plurality of sensing electrodes sensing the spin waves, being arranged on the first magnetic layer, and being located at different distances from one another from the straight line having the input electrodes arranged therein, and the following equation is satisfied: d=Vg×t0.
Abstract:
A magnetic switching element according to an example of the present invention includes a magnetic element, first and second electrodes which put the magnetic element therebetween, a current control section which is connected to the first and second electrodes, the current control section controlling a magnetization direction of a magnetization free section in such a manner that a current is made to flow between the magnetization free section and the magnetization fixed section, a movable conductive tube having a fixed end and a free end, and a third electrode connected to the fixed end of the conductive tube. A switching operation is performed in such a manner that a spatial position of the conductive tube is caused to change depending on the magnetization direction of the magnetization free section.
Abstract:
A magnetic memory element includes a laminated construction of a first electrode, a first pinned layer, a first intermediate layer, a memory layer, a second intermediate layer, a second pinned layer and a second electrode, and a third electrode coupled to the first intermediate layer and not directly coupled to the memory layer. The magnetization directions of the first pinned layer, the second pinned layer, and the memory layer are parallel or antiparallel to each other. The magnetization direction of the memory layer takes a first direction when the current is passed with a first polarity so that the current flowing through the first pinned layer exceeds a first threshold. The magnetization direction of the memory layer takes a second direction when the current is passed with a second polarity so that the current flowing through the first pinned layer exceeds a second threshold.
Abstract:
A magneto-resistance effect element can obtain a high output and makes it possible to stabilize magnetization in a magnetization free layer therein even if a sense current is caused to flow. The magneto-resistance effect element is provided with a magnetization free layer whose magnetization direction is variable, a magnetization pinned layer whose magnetization direction is pinned, and an intermediate layer provided between the magnetization free layer and the magnetization pinned layer, where when no external magnetic field is present and no current flows, the magnetization direction in the magnetization free layer is anti-parallel to the magnetization direction pinned in the magnetization pinned layer, an easy axis of magnetization in the magnetization free layer is parallel to the magnetization direction pinned in the magnetization pinned layer, and a sense current flows from the magnetization free layer to the magnetization pinned layer.
Abstract:
A brain response measurement system includes a stimulation timing control unit calculating, based on a delay time from a brain response to first stimulation in a first brain area to a brain response to a second stimulation in the first brain area, and a delay time from a brain response to the second stimulation in the second brain area to a brain response to the first stimulation in the second brain area, start and end times of the first stimulation and start and end times of the second stimulation that cause the brain response to the first stimulation in the first brain area and the brain response to the second stimulation in the first brain area not to overlap and cause the brain response to the second stimulation in the second brain area and the brain response to the first stimulation in the second brain area not to overlap.
Abstract:
A biological function measurement and analysis system, a biological function measurement and analysis method, and a recording medium storing program code causing a computer to execute the biological function measurement and analysis method. The biological function measurement and analysis system includes an input acceptance unit configured to accept selection of a biological function to be measured, and a measurement and analysis procedure determining unit configured to access a memory in which measurement and analysis procedure data, indicating a combination of measurement and analysis of reaction of a live subject caused by stimulation on a biological-function-by-biological-function basis, is stored to specify measurement and analysis procedure data corresponding to the selected biological function. The biological function measurement and analysis method includes accepting the selection of biological function to be measured, accessing the memory, and specifying the measurement and analysis procedure data corresponding to the selected biological function.