摘要:
A plated article has an alloy thin film formed on a substrate and having a catalytically active metal (A) for electroless plating and a metal (B) capable of undergoing displacement plating with a metal ion contained in an electroless plating solution, and a metal thin film formed on the alloy thin film by electroless displacement and reduction plating. The alloy thin film of the catalytically active metal (A) and the metal (B) capable of displacement plating has a composition comprising 5 at % to 40 at % of the metal (A). The metal thin film formed by electroless displacement and reduction plating is a metal thin film having a thickness no greater than 10 nm and a resistivity no greater than 10 μΩ·cm. Preferably, the metal (B) has a barrier function with respect to a metal of the metal thin film.
摘要:
Disclosed is a method of producing a semiconductor device, able to form a source/drain of a Schottky junction (FET) with simple steps and able to improve the device characteristics. A gate is formed on an element region defined in a silicon substrate layer by element isolation regions (first step), the silicon substrate is etched by self-alignment using the gate and the element isolation regions as masks (second step), and an insulating film is formed on the side surfaces of the gate (third step). Then, a metal film acting as the source/drain is selectively formed on the etching region of the silicon substrate by electroless plating (fourth step).
摘要:
The object of the present invention is to provide a silver plated and/or a silver alloy plated article with high productivity, high reflectance in the visible light range, and excellent sulfidizing resistance. The present invention provides a silver electroplated and/or silver alloy electroplated article having an oxidation layer on its surface, wherein a silver plating layer and/or silver alloy plating layer is formed on a substrate by silver electroplating and/or silver alloy electroplating, and then subjected to oxidation treatment to form an oxidation layer on the surface thereof. The thickness of the oxidation layer formed on the surface of the plating layer is 0.05 μm or more.
摘要:
There is provided a technology that can be applied as a substrate material to ordinary resin substrate materials and allows the adhesive strength between this substrate material and a plating metal layer to be increased; more specifically, there is provided an ordinary resin substrate material with an increased adhesive strength between the substrate material and a plating metal layer. The present invention relates to a resin substrate material such as an epoxy resin whose surface is swellable in a solution containing imidazolesilane and a palladium or other noble metal compound having a catalytic action in electroless plating and which has been surface-treated with the solution, and to an electronic component substrate material manufactured by performing electroless plating on this resin substrate material.
摘要:
An object of the present is to provide a ULSI micro-interconnect member having a seed layer which, particularly on the inner sidewalls of vias and trenches, is formed with a sufficient coverage and a film thickness uniform with that on surface portion, and which has a low level of impurities. Further objects of the invention are to provide a ULSI micro-interconnect member in which, by utilizing such a seed layer to subsequently effect copper electroplating, micro-interconnects have been formed without generating voids; a process for forming the same; and a semiconductor wafer in which such ULSI micro-interconnects have been formed. A ULSI micro-interconnect member having a substrate and a ULSI micro-interconnect formed on the substrate, wherein the ULSI micro-interconnect includes a barrier layer formed on the substrate and a ruthenium electroplating layer formed on the barrier layer; the ULSI micro-interconnect member further including a copper electroplating layer formed using the ruthenium electroplating layer as a seed layer; and a process for fabricating the ULSI micro-interconnect members.
摘要:
Provided is iron-based metal powder for powder metallurgy including a metallic soap containing at least one or more types of metal selected from a group of Ag, Au, Bi, Co, Cu, Mo, Ni, Pd, Pt, Sn and Te having a higher standard oxidization potential than iron, and an additional metal which forms a liquid phase at a temperature of 1200° C. or less in the combination with the metal, wherein the soap contains metal for forming an alloy phase between the two. As a result, obtained is mixed powder for powder metallurgy capable of improving the rust prevention effect easily without having to hardly change the conventional processes.
摘要:
A method for forming a seed layer for damascene copper wiring is provided. The method comprises the step of forming a seed layer, during damascene copper wiring formation, using an electroless plating solution comprising a water-soluble nitrogen-containing polymer and glyoxylic acid as a reducing agent, wherein the weight-average molecular weight (Mw) of the water-soluble nitrogen-containing polymer is 1,000 to less than 100,000. Preferably, the electroless plating solution further comprises phosphinic acid.
摘要:
There is provided a technology that can be applied as a substrate material to ordinary resin substrate materials and allows the adhesive strength between this substrate material and a plating metal layer to be increased; more specifically, there is provided an ordinary resin substrate material with an increased adhesive strength between the substrate material and a plating metal layer. The present invention relates to a resin substrate material such as an epoxy resin whose surface is swellable in a solution containing imidazolesilane and a palladium or other noble metal compound having a catalytic action in electroless plating and which has been surface-treated with the solution, and to an electronic component substrate material manufactured by performing electroless plating on this resin substrate material.
摘要:
Provided is an iron-based sintered body with a rustproof function comprising a layer containing 0.01 to 5 at % of indium on the surface of the iron-based sintered body, or an iron-based sintered body with a rustproof function containing 0.01 to 5 at % of indium throughout the sintered body, and the iron-based sintered body having iron as its principal component is manufactured by performing sintering in a gas atmosphere containing indium vapor or indium. Thereby obtained is an iron-based sintered body, as well as the manufacturing method thereof, capable of easily improving the rustproof effect without having to hardly change the conventional process.
摘要:
Provided is metallic powder for powder metallurgy having iron as its principal component and containing indium soap, or metallic powder for powder metallurgy further comprising at least one type selected among bismuth soap, nickel soap, cobalt soap, copper soap, manganese soap and aluminum soap in such indium soap. Thereby obtained is metallic powder for powder metallurgy capable of easily improving the rustproof effect without having to hardly change the conventional process.