摘要:
An active matrix substrate (20a) includes a gate electrode (25) formed on an insulating substrate (10a), and a planarizing film (26) formed on the gate electrode (25) and made of a baked SOG material. The gate electrode (25) is a multilayer film including a first conductive film (27) formed on the insulating substrate (10a) and made of a metal except copper, a second conductive film (28) formed on the first conductive film (27) and made of copper, and a third conductive film (29) formed on the second conductive film (28) and made of the metal except copper.
摘要:
A semiconductor device includes: a thin film transistor having a gate line (3a), a first insulating film (5), an island-shaped oxide semiconductor layer (7a), a second insulating film (9), a source line (13as), a drain electrode (13ad), and a passivation film; and a terminal portion having a first connecting portion (3c) made of the same conductive film as the gate line, a second connecting portion (13c) made of the same conductive film as the source line and the drain electrode, and a third connecting portion (19c) formed on the second connecting portion. The second connecting portion is in contact with the first connecting portion within a first opening (11c) provided in the first and second insulating films; the third connecting portion (19c) is in contact with the second connecting portion within a second opening (17c) provided in the passivation film; and the second connecting portion (13c) covers end faces of the first and second insulating films within the first opening (11c), but does not cover an end face of the passivation film (15) within the second opening (17c). As a result, the taper shape of a contact hole of the terminal portion can be controlled with a high precision.
摘要:
The present invention has an object of providing a TFT in which generation of an OFF current is reduced by an efficient manufacturing method. A thin film transistor 100 according to the present invention has a gate electrode 12 formed on a substrate 10, an insulating layer 14 formed on the gate electrode 12, a microcrystalline amorphous silicon layer 18 and an amorphous silicon layer 16 that are formed on the insulating layer 14, a semiconductor layer 20 containing an impurity formed on the amorphous silicon layer 16, and a source electrode 22A and a drain electrode 22B that are formed on the semiconductor layer 20 containing an impurity. The microcrystalline amorphous silicon layer 18 and the semiconductor layer 20 containing an impurity are connected to each other through the amorphous silicon layer 16 without being in direct contact with each other.
摘要:
A semiconductor device includes: a thin film transistor having a gate line (3a), a first insulating film (5), an island-shaped oxide semiconductor layer (7a), a second insulating film (9), a source line (13as), a drain electrode (13ad), and a passivation film; and a terminal portion having a first connecting portion (3c) made of the same conductive film as the gate line, a second connecting portion (13c) made of the same conductive film as the source line and the drain electrode, and a third connecting portion (19c) formed on the second connecting portion. The second connecting portion is in contact with the first connecting portion within a first opening (11c) provided in the first and second insulating films; the third connecting portion (19c) is in contact with the second connecting portion within a second opening (17c) provided in the passivation film; and the second connecting portion (13c) covers end faces of the first and second insulating films within the first opening (11c), but does not cover an end face of the passivation film (15) within the second opening (17c). As a result, the taper shape of a contact hole of the terminal portion can be controlled with a high precision.
摘要:
A method for manufacturing a display device 10 includes a substrate supporting step for supporting a plastic substrate 19 on a support substrate 50, with the plastic substrate 19 curved, and a thin film lamination step for laminating a plurality of thin films on the plastic substrate 19 supported on the support substrate 50.
摘要:
The present invention provides a thin film transistor including an oxide semiconductor layer (4) for electrically connecting a signal electrode (6a) and a drain electrode (7a), the an oxide semiconductor layer being made from an oxide semiconductor; and a barrier layer (6b) made from at least one selected from the group consisting of Ti, Mo, W, Nb, Ta, Cr, nitrides thereof, and alloys thereof, the barrier layer (6b) being in touch with the signal electrode (6a) and the oxide semiconductor layer (4) and separating the signal electrode (6a) from the oxide semiconductor layer (4). Because of this configuration, the thin film transistor can form and maintain an ohmic contact between the first electrode and the channel layer, thereby being a thin film transistor with good properties.
摘要:
A method for manufacturing a display device 10 includes a substrate supporting step for supporting a plastic substrate 19 on a support substrate 50, with the plastic substrate 19 curved, and a thin film lamination step for laminating a plurality of thin films on the plastic substrate 19 supported on the support substrate 50.
摘要:
An active matrix substrate includes a plurality of pixels arranged in a matrix, a plurality of capacitor lines (11b) extending in one of directions in which the pixels are aligned and in parallel to each other, a plurality of TFTs (5), one for each of the pixels, a protective film (16a) covering the TFTs (5), a plurality of pixel electrodes (18a) arranged in a matrix on the protective film (16a) and connected to the respective corresponding TFTs (5), and a plurality of auxiliary capacitors (6), one for each of the pixels. Each of the auxiliary capacitors (6) includes the corresponding capacitor line (11b), the corresponding pixel electrode (18a), and the protective film (16a) between the corresponding capacitor line (11b) and the corresponding pixel electrode (18a).
摘要:
An object of this invention is to provide a semiconductor device in which TFTs with high mobility are arranged in both of display and peripheral circuit areas. A semiconductor device fabricating method according to the present invention includes the steps of: irradiating an amorphous silicon layer (34) with energy, thereby obtaining a microcrystalline silicon layer; and forming a doped semiconductor layer (35) on the amorphous silicon layer (34). In the step of irradiating, the amorphous silicon layer (34) is irradiated with energy that has a first quantity, thereby forming a first microcrystalline silicon layer (34A) including a channel layer for a first TFT (30A), and is also irradiated with energy that has a second quantity, which is larger than the first quantity, thereby forming a second microcrystalline silicon layer (34B) including a channel layer for a second TFT (30B).
摘要:
Disclosed is a high-quality, efficiently manufacturable thin film transistor in which leakage current is minimized. The thin film transistor is provided with a semiconductor layer (34) that contains a channel region (34C) having a microcrystalline semiconductor; source and drain contact layers (35S and 35D) that contains impurities; a first source metal layer (36S) and a first drain metal layer (36D), and a second source metal layer (37S) and a second drain metal layer (37D). The end portion of the second metal source layer (37S) is located at a position receded from the end portion of the first metal source layer (36S) and the end portion of the second drain metal layer (37D) is located at a position receded from the end portion of the first drain metal layer (36D). The semiconductor layer (34) contains low concentration impurity diffusion regions formed near the end portions of the aforementioned source contact layer (35S) and drain contact layer (35D).