Abstract:
The embodiments generally relate to methods of making semiconductor devices, and more particularly, to methods for making semiconductor pillar structures and increasing array feature pattern density using selective or directional gap fill. The technique has application to a variety of materials and can be applied to making monolithic two or three-dimensional memory arrays.
Abstract:
A monolithic three dimensional semiconductor device structure includes a first layer including a first occurrence of a first reference mark at a first location, and a second layer including a second occurrence of the first reference mark at a second location, wherein the second location is substantially directly above the first location. The device structure also includes an intermediate layer between the first layer and the second layer, the intermediate layer including a blocking structure, wherein the blocking structure is vertically interposed between the first occurrence of the first reference mark and the second occurrence of the first reference mark. Other aspects are also described.
Abstract:
A method of making a device includes forming a first sacrificial layer over an underlying layer, forming a first photoresist layer over the first sacrificial layer, patterning the first photoresist layer to form first photoresist features, rendering the first photoresist features insoluble to a solvent, forming a second photoresist layer over the first photoresist features, patterning the second photoresist layer to form second photoresist features, etching the first sacrificial layer using both the first and the second photoresist features as a mask to form first sacrificial features, forming a spacer layer over the first sacrificial features, etching the spacer layer to form spacer features and to expose the sacrificial features, removing the first sacrificial features, and etching at least part of the underlying layer using the spacer features as a mask.
Abstract:
A method of making a semiconductor device includes forming at least one device layer over a substrate, forming at least two spaced apart features over the at least one device layer, forming sidewall spacers on the at least two features, selectively removing the spaced apart features, filling a space between a first sidewall spacer and a second sidewall spacer with a filler feature, selectively removing the sidewall spacers to leave a plurality of the filler features spaced apart from each other, and etching the at least one device layer using the filler feature as a mask.
Abstract:
The surface of a conductive layer such as a conductive nitride, a conductive silicide, a metal, or metal alloy or compound, is exposed to a dopant gas which provides an n-type or p-type dopant. The dopant gas may be included in a plasma. Semiconductor material, such as silicon, germanium, or their alloys, is deposited directly on the surface which has been exposed to the dopant gas. During and subsequent to deposition, dopant atoms diffuse into the deposited semiconductor, forming a thin heavily doped region and making a good ohmic contact between the semiconductor material and the underlying conductive layer.
Abstract:
A method of making a semiconductor device includes forming at least one device layer over a substrate, forming at least two spaced apart features over the at least one device layer, forming sidewall spacers on the at least two features, selectively removing the spaced apart features, filling a space between a first sidewall spacer and a second sidewall spacer with a filler feature, selectively removing the sidewall spacers to leave a plurality of the filler features spaced apart from each other, and etching the at least one device layer using the filler feature as a mask.
Abstract:
A nonvolatile memory cell according to the present invention comprises a bottom conductor, a semiconductor pillar, and a top conductor. The semiconductor pillar comprises a junction diode, including a bottom heavily doped region, a middle intrinsic or lightly doped region, and a top heavily doped region, wherein the conductivity types of the top and bottom heavily doped region are opposite. The junction diode is vertically oriented and is of reduced height, between about 500 angstroms and about 3500 angstroms. A monolithic three dimensional memory array of such cells can be formed comprising multiple memory levels, the levels monolithically formed above one another.
Abstract:
A semiconductor wafer assembly includes a base of dielectric. A layer of silicon is deposited thereover. A metal hard mask is deposited over the silicon. A dielectric hard mask is deposited over the metal hard mask. Photoresist is deposited over the dielectric hard mask, whereby a plurality of sacrificial columns is formed from the layer of metal hard mask through the photoresist such that the sacrificial columns extend out from the silicon layer. An interface layer is disposed between the layer of conductive material and the layer of hard mask to enhance adhesion between each of the plurality of sacrificial columns and the layer of conductive material to optimize the formation of junction diodes out of the silicon by preventing the plurality of sacrificial columns from being detached from the layer of silicon prematurely due to the sacrificial columns peeling or falling off.
Abstract:
A method is provided for forming patterned features using a conductive hard mask, where the conductive hard mask protects those features during a subsequent trench etch to form Damascene conductors providing electrical connection to those features from above. The thickness of the hard mask provides a margin to avoid overetch during the trench etch which may be harmful to device performance. The method is advantageously used in formation of a monolithic three dimensional memory array.
Abstract:
An electron-emitting device (20, 70, 80, or 90) contains an electrode, either a control electrode (38) or an emitter electrode (32), having a specified portion situated off to the side of the bulk of the electrode. For a control electrode, the specified portion is an exposure portion (38EA or 38EB) having openings that expose electron-emissive elements (50A or 50B) situated over an emitter electrode. For an emitter electrode, the specified portion is an emitter-coupling portion situated below at least one electron-emissive element exposed through at least one opening in a control electrode. Configuring the device in this way enables the control-electrode-to-emitter-electrode capacitance to be quite small, thereby enhancing the device's switching speed. If the specified portion of the electrode becomes short circuited to the other electrode, the short-circuit defect can be removed by severing the specified portion from the remainder of its electrode.