Abstract:
Row lines include a layer of semiconductive material, conductive material over the layer of semiconductive material, and a passivation layer over the conductive material. The passivation layer contacts a dielectric layer that underlies the semiconductive layer of an emission device at locations that are laterally adjacent to edges of the layer of semiconductive material. One or more pixel openings are defined through the passivation layer, the conductive material, and the underlying semiconductive grid. At least one emitter tip may be exposed through each of the passivation layer, the conductive material, and the layer of semiconductive material. Such row lines may be included in field emission arrays and field emission devices.
Abstract:
Provided are a composite for paste including carbon nanotubes (CNTs), an electron emitting device using the same, and a manufacturing method thereof. The provided composite for paste includes 5 to 40 parts by weight of CNTs, 5 to 50 parts by weight of alkali metal silicate, and 1 to 20 parts by weight of a binder. The provided electron emitting device includes electron emitting tips, which are located on cathode electrodes in wells and formed of the composite for paste including 5 to 40 parts by weight of CNTs, 5 to 50 parts by weight of alkali metal silicate, and 1 to 20 parts by weight of a binder. The electron emitting device has excellent stability and durability and uniformly emits electrons from a large area, thereby improving the overall performance of an apparatus using the electron emitting device.
Abstract:
A display device can realize the highly efficient electron emission characteristics by ensuring the exposure of carbon nanotubes 13 in the inside of a vacuum by fixing the carbon nanotubes 13 to cathode wires 12 such that the carbon nanotubes 13 are not easily removed from the cathode wires 12 with the small resistance which enables the carbon nanotubes 13 to have the enough electron emission ability. Some end portions or some intermediate portions of the carbon nanotubes 13 are embedded into the cathode wires 12 formed on a rear substrate 11 and, at the same time, contact points where the carbon nanotubes 13 cross each other or portions in the vicinity of the crossing portions are bonded to each other by bonding films 14.
Abstract:
In order to provide a thin-film electron emitter device of a structure wherein electric connection between a top electrode and top electrode busline can be secured and also to provide a display apparatus using the thin-film electron emitter device, the top electrode busline thin on its connection side with the top electrode is formed on a field insulator which is thicker than an insulator forming electron emission areas and which is formed around the insulator, and the top electrode covers the top electrode busline to be connected with said thin part of said top electrode busline.
Abstract:
An electron emission film includes a matrix consisting essentially of amorphous carbon and fullerene-like structures consisting essentially of a two-dimensional network of six-membered carbon rings. The fullerene-like structures are dispersed in the matrix and partially project from the matrix. The weight ratio of amorphous carbon to the fullerene-like structures is about 50:50 to 5:95. Amorphous carbon contains nitrogen acting as a donor at a concentration of about 4×10−7 to 10 atom %.
Abstract:
The present invention discloses a new field emitter cell and array consisting of groups of nanofilaments forming emitter cathodes. Control gates are microprocessed to be integrally formed with groups of nanofilament emitter cathodes on a substrate. Groups of nanofilaments are grown directly on the substrate material. As a result, the control gates and groups of nanofilaments are self-aligned with one another.
Abstract:
A device for generating electromagnetic radiation including a cathode and an anode. The output port that is integral with the cathode is an electron emitting sheet of material having a low work function for emitting electrons and for a given thickness has a large transmissivity for transmitting radiation. The anode has a target configuration capable of emitting electromagnetic radiation when irradiated by an electron beam. The cathode sheet is supported by a support layer that is selected to be transmissive to the electromagnetic radiation when the cathode sheet must be thin enough to transmit the radiation but is not thick enough to be self supporting. When the support layer is an insulator, electrical connection is made directly to the cathode sheet or to a conducting layer interposed between the cathode sheet and support layer.
Abstract:
A field emission display having element including a first electrode, and a second electrode laminated to the first electrode through an insulating layer. The first electrode has an opening; the second electrode has a hole of a planar shape corresponding to that of the opening at a position matched with the opening; and the insulating layer has a through-hole continuous to the opening and the hole. An upper edge portion of the hole is formed into a cross-sectional shape having an edge angle in a range of 80 to 100°, and at least part of the upper edge portion of the hole is exposed in the through-hole. In this element, electrons are emitted from the second electrode through the upper edge portion of the hole exposed in the through-hole by applying a specific voltage between the first electrode and the second electrode. With this configuration, a distance between the gate electrode and a field emission portion of the cathode electrode can be accurately controlled with a simple structure. To enhance an emission efficiency of electrons, a second gate electrode may be provided on the lower side of the cathode electrode through an insulating layer.
Abstract:
In an electron emitting device, an electron source and an image forming apparatus making use of it, and producing methods of them, an organic film is present on a pair of conductive films forming the electron emitting device. This organic film is placed in an area on the conductive films. This prevents occurrence of leak paths between the conductive films, which used to occur because of change of the organic film on the substrate into a conductor where the organic film existed on the substrate outside the area of the conductive films, and prevents decrease in electron emission efficiency.
Abstract:
An image display device includes a display panel, and a housing that includes a frame body arranged on the circumference of the display panel and a back cover arranged on the back of the display panel. The frame body has a structure for sandwiching therein the display panel.