Abstract:
A method and integrated circuit structure for mitigating metal gate dishing resulting from chemical mechanical polishing. The integrated circuit structure comprises a first area comprising at least one first type device; a second area comprising at least one second type device; a third area comprising at least one capacitor having an uppermost layer of polysilicon, where the capacitor area is greater than a sum of the first and second areas. The method utilizes the polysilicon of the capacitor to mitigate metal gate dishing of a metal gate of at least one device.
Abstract:
A method of protecting a transistor formed on a die of an integrated circuit is disclosed. The method comprises forming an active region of the transistor on the die; forming a gate of the transistor over the active region; coupling a primary contact to the gate of the transistor; coupling a programmable element between the gate of the transistor and a protection element; and decoupling the protection element from the gate of the transistor by way of the programmable element. Circuits for protecting a transistor formed on a die of an integrated circuit are also disclosed.
Abstract:
A method of protecting a transistor formed on a die of an integrated circuit is disclosed. The method comprises forming an active region of the transistor on the die; forming a gate of the transistor over the active region; coupling a primary contact to the gate of the transistor; coupling a programmable element between the gate of the transistor and a protection element; and decoupling the protection element from the gate of the transistor by way of the programmable element. Circuits for protecting a transistor formed on a die of an integrated circuit are also disclosed.
Abstract:
An inductive device includes an inductor having an inductance associated therewith, and a tuning ring disposed around the inductor. The tuning ring has an inductance associated therewith, wherein the tuning ring is coupled to the inductor to establish a mutual inductance between the tuning ring and the inductor. The inductance of the inductor, the inductance of the tuning ring, and the mutual inductance between the tuning ring and the inductor contribute to a total inductance of the inductive device. The tuning ring is configurable, and is selectively configured to achieve a certain value for the mutual inductance, and a certain value for the inductance of the tuning ring, without changing a footprint of the tuning ring.
Abstract:
Modeling and simulating behavior of a transistor are described. At least one sub-circuit model for modeling at least one second order effect associated with the transistor is obtained. At least one instance parameter for the at least one second order effect is obtained. Operation of a transistor behavior simulator is augmented with the at least one sub-circuit model populated with the at least one instance parameter such that the simulating of the behavior of the transistor produces data that takes into account the at least one second order effect. The at least one second order effect may be an LOD/eSiGe effect, a poly pitch effect, or a DSL boundary effect. Also described is a method for generation of a sub-circuit model.
Abstract:
A circuit for protecting a transistor during the manufacture of an integrated circuit device is disclosed. The circuit comprises a transistor having a gate formed over an active region formed in a die of the integrated circuit device; a protection element formed in the die of the integrated circuit device; and a programmable interconnect coupled between the gate of the transistor and the protection element, the programmable interconnect enabling the protection element to be decoupled from the transistor.
Abstract:
An integrated circuit has a transistor with an active gate structure overlying an active diffusion area formed in a semiconductor substrate. A dummy gate structure is formed over a diffusion area and separated from the active gate structure by a selected distance (d2). A stress layer overlying the transistor array produces stress in a channel region of the transistor.
Abstract:
An integrated circuit (100) has a transistor with an active gate structure 108 overlying an active diffusion area 112 formed in a semiconductor substrate 126. A dummy gate structure 110 is formed over a diffusion area and separated from the active gate structure by a selected distance (d2). A stress layer (130) overlying the transistor array produces stress in a channel region (107) of the transistor.
Abstract:
An inductor structure can be implemented within a semiconductor integrated circuit (IC). The inductor structure can include a coil of conductive material having a first terminal and a second terminal each located at an opposing end of the coil. The inductor structure can include a patterned ground shield including a plurality of fingers implemented within an IC process layer located between the coil of conductive material and a substrate of the IC. The inductor structure also can include an isolation wall formed to encompass the coil and the patterned ground shield. The isolation wall can be coupled to one end of each finger.
Abstract:
An inductor structure can be implemented within a semiconductor integrated circuit (IC). The inductor structure can include a coil of conductive material having a first terminal and a second terminal each located at an opposing end of the coil. The inductor structure can include a patterned ground shield including a plurality of fingers implemented within an IC process layer located between the coil of conductive material and a substrate of the IC. The inductor structure also can include an isolation wall formed to encompass the coil and the patterned ground shield. The isolation wall can be coupled to one end of each finger.