摘要:
The present invention is based on the seminal discovery that BTLA agonist fusion proteins modulate an immune response. Specifically, the present invention provides fusion proteins that bind BTLA enhancing BTLA signaling The present invention further provides methods of treating cancer and immune and inflammatory diseases and disorders with a BTLA agonist fusion protein as described herein.
摘要:
N-substituted sulfonylphenyl-5-nitrofuranyl-2-carboxamide derived compounds, which selectively activate the apoptotic, but not the adaptive arm, of the Unfolded Protein Response are provides as is their use in the treatment of diseases such as diabetes, Alzheimer's, Parkinson's, hemophilia, lysosomal storage diseases and cancer.
摘要:
Provided herein are small molecule Epstein-Barr virus-induced G-protein coupled receptor 2 (EBI2) modulator compounds, compositions comprising the compounds, and methods of using the compounds and compositions comprising the compounds. EBI2 is a therapeutic target for the treatment of a variety of diseases or conditions. In some embodiments, EBI2 is a therapeutic target for the treatment of diseases or conditions such as, but not limited to, autoimmune diseases or conditions, cancer, and cardiovascular disease.
摘要:
N-substituted sulfonylphenyl-5-mitrofuranyl-2-carboxamide derived compounds, which selectively activate the apoptotic, but not the adaptive arm, of the Unfolded Protein Response are provided as is their use in the treatment of diseases such as diabetes, Alzheimer's, Parkinson's, hemophilia, lysosomal storage diseases and cancer.
摘要:
Disclosed are compositions and methods useful for targeting tumors, sites of injury and blood clots. The compositions and methods are based on peptide sequences that selectively bind to and home to tumors, sties of injury and blood clots in animals. The disclosed targeting is useful for delivering therapeutic and detectable agents to tumors, sites of injury and blood clots.
摘要:
Described herein are compounds that modulate the activity of TNAP. In some embodiments, the compounds described herein inhibit TNAP. In certain embodiments, the compounds described herein are useful in the treatment of conditions associated with hyper-mineralization.
摘要:
Disclosed herein are Furin/PC inhibitors for inhibiting Furin and other Propprotein Convertases. Method of making the Furin/PC inhibitors, chemical and biological characterization of the Furin/PC inhibitors, and the use of the Furin/PC inhibitors to treat infectious diseases, cancers, and inflammatory/autoimmune disorders, are also disclosed.
摘要:
The present invention provides a variety of isolated peptides and peptidomimetics, which can be useful, for example, in constructing the conjugates of the invention or, where the peptide itself has biological activity, in unconjugated form as a therapeutic for treating any of a variety of cardiovascular diseases as described below. Thus, the present invention provides an isolated peptide or peptidomimetic which has a length of less than 60 residues and includes the amino acid sequence CRPPR (SEQ ID NO: 1) or a peptidomimetic thereof. The invention further provides an isolated peptide or peptidomimetic which has a length of less than 60 residues and includes the amino acid sequence CARPAR (SEQ ID NO: 5) or a peptidomimetic thereof, or amino acid sequence CPKRPR (SEQ ID NO: 6) or a peptidomimetic thereof.
摘要翻译:本发明提供了多种分离的肽和肽模拟物,其可用于构建本发明的缀合物,或其中肽本身具有生物学活性的非共轭形式作为治疗各种各样的 心血管疾病如下所述。 因此,本发明提供长度小于60个残基的分离的肽或肽模拟物,并且包括氨基酸序列CRPPR(SEQ ID NO:1)或其肽模拟物。 本发明还提供长度小于60个残基的分离的肽或肽模拟物,包括氨基酸序列CARPAR(SEQ ID NO:5)或其拟肽,或氨基酸序列CPKRPR(SEQ ID NO:6)或 其拟肽。
摘要:
Cellular targets on cancer cells have been identified that can be used with targeted molecular imaging to detect the cancer cells in vivo. Non-invasive methods for detecting cancer cells, such as metastasized cancer cells, are therefore provided. Also provided are compositions and kits for use in the disclosed methods.
摘要:
Disclosed are compositions and methods useful for targeting tumors, sites of injury and blood clots. The compositions and methods are based on peptide sequences that selectively bind to and home to tumors, sties of injury and blood clots in animals. The disclosed targeting is useful for delivering therapeutic and detectable agents to tumors, sites of injury and blood clots.