Laser segmented cutting, multi-step cutting, or both
    1.
    再颁专利
    Laser segmented cutting, multi-step cutting, or both 有权
    激光分段切割,多步切割或两者兼容

    公开(公告)号:USRE43605E1

    公开(公告)日:2012-08-28

    申请号:US12351562

    申请日:2009-01-09

    IPC分类号: B23K26/04 C04B41/91

    摘要: UV laser cutting throughput through silicon and like materials is improved by dividing a long cut path (112) into short segments (122), from about 10 μm to 1 mm. The laser output (32) is scanned within a first short segment (122) for a predetermined number of passes before being moved to and scanned within a second short segment (122) for a predetermined number of passes. The bite size, segment size (126), and segment overlap (136) can be manipulated to minimize the amount and type of trench backfill. Real-time monitoring is employed to reduce rescanning portions of the cut path 112 (112) where the cut is already completed. Polarization direction of the laser output (32) is also correlated with the cutting direction to further enhance throughput. This technique can be employed to cut a variety of materials with a variety of different lasers and wavelengths. A multi-step process can optimize the laser processes for each individual layer.

    摘要翻译: 通过将长切割路径(112)分割成约10微米至1mm的短段(122)来提高通过硅等材料的UV激光切割吞吐量。 激光输出(32)在第一短段(122)内扫描预定数量的通过,然后移动到第二短段(122)内并在第二短段(122)内扫描预定次数的通过次数。 可以操纵咬合尺寸,段尺寸(126)和段重叠(136)以最小化沟槽回填的数量和类型。 采用实时监测来减少已经完成切割的切割路径112(112)的重新扫描部分。 激光输出(32)的极化方向也与切割方向相关,以进一步提高吞吐量。 该技术可用于切割具有各种不同激光和波长的各种材料。 多步骤过程可以优化每个单独层的激光工艺。

    Back side wafer dicing
    3.
    发明授权
    Back side wafer dicing 有权
    背面晶圆切片

    公开(公告)号:US07494900B2

    公开(公告)日:2009-02-24

    申请号:US11441453

    申请日:2006-05-25

    IPC分类号: H01L21/00

    摘要: Systems and methods for scribing a semiconductor wafer with reduced or no damage or debris to or on individual integrated circuits caused by the scribing process. The semiconductor wafer is scribed from a back side thereof. In one embodiment, the back side of the wafer is scribed following a back side grinding process but prior to removal of back side grinding tape. Thus, debris generated from the scribing process is prevented from being deposited on a top surface of the wafer. To determine the location of dicing lanes or streets relative to the back side of the wafer, the top side of the wafer is illuminated with a light configured to pass through the grinding tape and the wafer. The light is detected from the back side of the wafer, and the streets are mapped relative to the back side. The back side of the wafer is then cut with a saw or laser.

    摘要翻译: 用于划片半导体晶片的系统和方法,其具有减少或不损坏或碎片到由划线过程引起的单个集成电路上或之上。 半导体晶片从其后侧划线。 在一个实施例中,在背面研磨过程之后但在去除背面研磨带之前,对晶片的背面进行划线。 因此,防止从划线工艺产生的碎屑沉积在晶片的顶表面上。 为了确定相对于晶片背面的切割车道或街道的位置,用构造成穿过研磨带和晶片的光来照射晶片的顶侧。 从晶片的背面检测光,并且相对于背面映射街道。 然后用锯或激光切割晶片的背面。

    Ultraviolet laser ablative patterning of microstructures in semiconductors
    4.
    发明授权
    Ultraviolet laser ablative patterning of microstructures in semiconductors 有权
    半导体微结构的紫外激光烧蚀图案化

    公开(公告)号:US07157038B2

    公开(公告)日:2007-01-02

    申请号:US10017497

    申请日:2001-12-14

    IPC分类号: B23K26/38

    摘要: Patterns with feature sizes of less than 50 microns are rapidly formed directly in semiconductors, particularly silicon, GaAs, indium phosphide, or single crystalline sapphire, using ultraviolet laser ablation. These patterns include very high aspect ratio cylindrical through-hole openings for integrated circuit connections; singulation of processed die contained on semiconductor wafers; and microtab cutting to separate microcircuit workpieces from a parent semiconductor wafer. Laser output pulses (32) from a diode-pumped, Q-switched frequency-tripled Nd:YAG, Nd:YVO4, or Nd:YLF is directed to the workpiece (12) with high speed precision using a compound beam positioner. The optical system produces a Gaussian spot size, or top hat beam profile, of about 10 microns. The pulse energy used for high-speed ablative processing of semiconductors using this focused spot size is greater than 200 μJ per pulse at pulse repetition frequencies greater than 5 kHz and preferably above 15 kHz. The laser pulsewidth measured at the full width half-maximum points is preferably less than 80 ns.

    摘要翻译: 特征尺寸小于50微米的图案使用紫外激光烧蚀直接在半导体,特别是硅,GaAs,磷化铟或单晶蓝宝石中形成。 这些图案包括用于集成电路连接的非常高的纵横比圆柱形通孔开口; 包含在半导体晶片上的加工芯片的分割; 和微型切割以从母半导体晶片分离微电路工件。 来自二极管泵浦Q开关频率三倍的Nd:YAG,Nd:YVO 4或Nd:YLF的激光输出脉冲(32)以高速精度被引导到工件(12) 使用复合光束定位器。 光学系统产生约10微米的高斯光点尺寸或顶帽光束轮廓。 用于使用这种聚焦光点尺寸的半导体高速烧蚀处理的脉冲能量大于5kHz,优选高于15kHz的脉冲重复频率时,每脉冲大于200μJ。 在全宽度半最大点处测量的激光脉冲宽度优选小于80ns。

    Laser based method and system for integrated circuit repair or
reconfiguration
    6.
    发明授权
    Laser based method and system for integrated circuit repair or reconfiguration 失效
    用于集成电路修复或重新配置的基于激光的方法和系统

    公开(公告)号:US6025256A

    公开(公告)日:2000-02-15

    申请号:US898555

    申请日:1997-07-22

    CPC分类号: H01L21/76894

    摘要: The present invention provides a method and system for irradiating resist material from multiple target positions (150) on one or more IC chips (12) with individually directed laser output pulses (74, 94). In one embodiment, an IC (12), including one or more etch targets (104, 106) such as conductive links (72, 92), is coated with an etch protection layer (90) of photoresist material. Then, position data direct, toward multiple positions (150) on the photoresist material, individual laser output pulses (94) of predetermined parameters selected to expose the photoresist material. Because photoresist exposure requires less energy than link blowing, low-power UV lasers (120) can be employed, and their shorter wavelengths permit a smaller practical laser output spot size (98). Because the nonablative process does not generate debris, an optical component (148) can be brought within 10 mm of etch protection layer (90) to focus the laser output pulses (94) to a spot size of less than two times the wavelength of laser output (140). Thus, an advantage of this embodiment permits microcircuit manufacturers to decrease the pitch distance (28) between circuit elements (14). After the photoresist layer (90) is developed, the accessible etch target (92) can be etched to repair or reconfigure the IC device. In another embodiment, slightly higher UV power laser output pulses (74) can be employed to ablate an etch protection resist layer (70) so any type of etch protection coating such as nonphotosensitive resist materials can be utilized with substantial manufacturing and cost benefits. Etching of the accessible etch targets (60, 62) follows this process.

    摘要翻译: 本发明提供了一种方法和系统,用于利用单独定向的激光输出脉冲(74,94)将多个目标位置(150)的抗蚀剂材料照射在一个或多个IC芯片(12)上。 在一个实施例中,包括一个或多个蚀刻目标(104,106)的IC(12),例如导电连接(72,92),涂覆有光刻胶材料的蚀刻保护层(90)。 然后,将位置数据直接指向光致抗蚀剂材料上的多个位置(150),选择用于曝光光致抗蚀剂材料的预定参数的各个激光输出脉冲(94)。 因为光刻胶的曝光需要比连接吹塑更少的能量,所以可以采用低功率UV激光器(120),而较短的波长允许更小的实际激光输出光斑尺寸(98)。 因为非烧蚀过程不会产生碎屑,所以可将光学部件(148)置于10mm蚀刻保护层(90)内,以将激光输出脉冲(94)聚焦到小于激光波长的两倍的光斑尺寸 输出(140)。 因此,该实施例的优点允许微电路制造商降低电路元件(14)之间的间距(28)。 在光致抗蚀剂层(90)显影之后,可蚀刻可访问蚀刻靶(92)以修复或重新配置IC器件。 在另一个实施例中,可以采用略高的UV功率激光输出脉冲(74)来消融蚀刻保护抗蚀剂层(70),因此可以利用任何类型的蚀刻保护涂层,例如非光敏抗蚀剂材料,具有显着的制造和成本优点。 该可访问蚀刻目标(60,62)的蚀刻遵循该过程。

    BACK SIDE WAFER DICING
    7.
    发明申请
    BACK SIDE WAFER DICING 审中-公开
    后面倒角

    公开(公告)号:US20090155935A1

    公开(公告)日:2009-06-18

    申请号:US12389686

    申请日:2009-02-20

    IPC分类号: H01L21/02

    摘要: Systems and methods for scribing a semiconductor wafer with reduced or no damage or debris to or on individual integrated circuits caused by the scribing process. The semiconductor wafer is scribed from a back side thereof. In one embodiment, the back side of the wafer is scribed following a back side grinding process but prior to removal of back side grinding tape. Thus, debris generated from the scribing process is prevented from being deposited on a top surface of the wafer. To determine the location of dicing lanes or streets relative to the back side of the wafer, the top side of the wafer is illuminated with a light configured to pass through the grinding tape and the wafer. The light is detected from the back side of the wafer, and the streets are mapped relative to the back side. The back side of the wafer is then cut with a saw or laser.

    摘要翻译: 用于划片半导体晶片的系统和方法,其具有减少或不损坏或碎片到由划线过程引起的单个集成电路上或之上。 半导体晶片从其后侧划线。 在一个实施例中,在背面研磨过程之后但在去除背面研磨带之前,对晶片的背面进行划线。 因此,防止从划线工艺产生的碎屑沉积在晶片的顶表面上。 为了确定相对于晶片背面的切割车道或街道的位置,用构造成穿过研磨带和晶片的光来照射晶片的顶侧。 从晶片的背面检测光,并且相对于背面映射街道。 然后用锯或激光切割晶片的背面。

    Quasi-CW diode-pumped, solid-state harmonic laser system and method employing same
    9.
    发明授权
    Quasi-CW diode-pumped, solid-state harmonic laser system and method employing same 有权
    准CW二极管泵浦,固态谐波激光系统及其应用方法

    公开(公告)号:US06781090B2

    公开(公告)日:2004-08-24

    申请号:US10242299

    申请日:2002-09-11

    IPC分类号: B23K2638

    摘要: A quasi-CW diode-pumped, A-O Q-switched solid-state harmonic laser system (10) synchronizes timing of the quasi-CW pumping with movement of the positioning system (36) to reduce pumping while the positioning system (36) is moving from one target area (31) to the next target area (31) to form multiple vias in a substrate at a high throughput. Thus, the available UV power for via formation is higher even though the loading to the laser pumping diodes (14) remains the same as that currently available through conventional CW pumping with conventionally available laser pumping diodes (14). The quasi-CW-pumping current profile can be further modified to realize a preferred UV pulse amplitude profile.

    摘要翻译: 准CW二极管泵浦AOQ开关固态谐波激光系统(10)使准CW泵浦的定时与定位系统(36)的运动同步,以在定位系统(36)移动时减少泵送 从一个目标区域(31)到下一个目标区域(31),以高通量在基板中形成多个通孔。 因此,即使对于激光泵浦二极管(14)的负载保持与通过常规CW泵浦可用的常规可用激光二极管(14)可用的负载相同,用于通孔形成的可用UV功率也较高。 可以进一步修改准CW泵浦电流分布,以实现优选的UV脉冲幅度分布。