Abstract:
A method of depositing III-V solar collection materials on a GeSn template on a silicon substrate including the steps of providing a crystalline silicon substrate and epitaxially growing a single crystal GeSn layer on the silicon substrate using a grading profile to grade Sn through the layer. The single crystal GeSn layer has a thickness in a range of approximately 3 μm to approximately 5 μm. A layer of III-V solar collection material is epitaxially grown on the graded single crystal GeSn layer. The graded single crystal GeSn layer includes Sn up to an interface with the layer of III-V solar collection material.
Abstract:
A method of fabricating a rare earth oxide buffered III-N on silicon wafer including providing a crystalline silicon substrate, depositing a rare earth oxide structure on the silicon substrate including one or more layers of single crystal rare earth oxide, and depositing a layer of single crystal III-N material on the rare earth oxide structure so as to form an interface between the rare earth oxide structure and the layer of single crystal III-N material. The layer of single crystal III-N material produces a tensile stress at the interface and the rare earth oxide structure has a compressive stress at the interface dependent upon a thickness of the rare earth oxide structure. The rare earth oxide structure is grown with a thickness sufficient to provide a compressive stress offsetting at least a portion of the tensile stress at the interface to substantially reduce bowing in the wafer.
Abstract:
Photodiode devices with GeSn active layers can be integrated directly on p+ Si platforms under CMOS-compatible conditions. It has been found that even minor amounts of Sn incorporation (2%) dramatically expand the range of IR detection up to at least 1750 nm and substantially increases the absorption. The corresponding photoresponse can cover of all telecommunication bands using entirely group IV materials.
Abstract:
A method of growing quaternary epitaxial films having the formula YCZN wherein Y is a Group IV element and Z is a Group III element at temperatures in the range 550-750° C. is provided. In the method, a gaseous flux of precursor H3YCN and a vapor flux of Z atoms are introduced into a gas-source molecular beam epitaxial (GSMBE) chamber where they combine to form thin film of YCZN on the substrate. Preferred substrates are silicon, silicon carbide and AlN/silicon structures. Epitaxial thin film SiCAlN and GeCAlN are provided. Bandgap engineering may be achieved by the method by adjusting reaction parameters of the GSMBE process and the relative concentrations of the constituents of the quaternary alloy films. Semiconductor devices produced by the present method have bandgaps from about 2 eV to about 6 eV and exhibit a spectral range from visible to ultraviolet which makes them useful for a variety of optoelectronic and microelectronic applications. Large-area substrates for growth of conventional Group III nitrides and compounds are produced by SiCAlN deposited on large-diameter silicon wafers. The quaternary compounds, especially the boron containing compounds, exhibit extreme hardness. These quaternary compounds are radiation resistant and may be used in space exploration.
Abstract:
A IV or III-V device is fabricated on a germanium template on a silicon substrate and includes a thin layer of Ge epitaxially grown on a silicon substrate. The thin layer includes Ge delta doped with Sn at the silicon substrate. A single crystal layer of Ge is epitaxially grown on the thin layer of Ge doped with Sn. A structure including one of IV material and III-V material is epitaxially grown on the single crystal layer of Ge.
Abstract:
A semiconductor structure and fabrication method is provided for integrating wide bandgap nitrides with silicon. The structure includes a substrate, a single crystal buffer layer formed by epitaxy over the substrate and a group III nitride film formed by epitaxy over the buffer layer. The buffer layer is reflective and conductive. The buffer layer may comprise B an element selected from the group consisting of Zr, Hf, Al. For example, the buffer layer may comprise ZrB2, AlB2 or HfB2. The buffer layer provides a lattice match with the group III nitride layer. The substrate can comprise silicon, silicon carbide (SiC), gallium arsenide (GaAs), sapphire or Al2O3. The group III nitride material includes GaN, AlN, InN, AlGaN, InGaN or AlInGaN and can form an active region. In a presently preferred embodiment, the buffer layer is ZrB2 and the substrate is Si(111) or Si(100) and the group III nitride layer comprises GaN. The ZrB2 buffer layer provides a reflective and conductive buffer layer that has a small lattice mismatch with GaN. The semiconductor structure can be used to fabricate active microelectronic devices, such as transistors including field effect transistors and bipolar transistors. The semiconductor structure also can be used to fabricate optoelectronic devices, such as laser diodes and light emitting diodes.
Abstract:
A method of depositing III-V solar collection materials on a GeSn template on a silicon substrate including the steps of providing a crystalline silicon substrate and epitaxially growing a single crystal GeSn layer on the silicon substrate using a grading profile to grade Sn through the layer. The single crystal GeSn layer has a thickness in a range of approximately 3 μm to approximately 5 μm. A layer of III-V solar collection material is epitaxially grown on the graded single crystal GeSn layer. The graded single crystal GeSn layer includes Sn up to an interface with the layer of III-V solar collection material.
Abstract:
A method of fabricating a solar cell on a silicon substrate includes providing a crystalline silicon substrate, selecting a grading profile, epitaxially growing a template on the silicon substrate including a single crystal GeSn layer using the grading profile to grade Sn through the layer. The single crystal GeSn layer has a thickness in a range of approximately 3 μm to approximately 5 μm. At least two layers of high band gap material are epitaxially and sequentially grown on the template to form at least three junctions. The grading profile starts with the Sn at or near zero with the Ge at zero, the percentage of Sn varies to a maximum mid-area, and reduces the percentage of Sn to zero adjacent an upper surface.