摘要:
Photodiode devices with GeSn active layers can be integrated directly on p+ Si platforms under CMOS-compatible conditions. It has been found that even minor amounts of Sn incorporation (2%) dramatically expand the range of IR detection up to at least 1750 nm and substantially increases the absorption. The corresponding photoresponse can cover of all telecommunication bands using entirely group IV materials.
摘要:
Semiconductor structures having at least one quantum well heterostructure grown strain-free on Si(100) via a Sn1-xGex buffer layer and their uses are provided.
摘要:
The invention relates to a composite structure (11) formed by a plurality of layers (13, 15, 17, 19, 21, 23) including an optical fiber (25) for structural monitoring purposes which is at least partly embedded in a surface layer (13) of said structure (11), and insulation means of the optical fiber (25) areas susceptible to repair with respect to the surface layer (13) in which they are integrated, particularly a protective cover (27) and top and bottom separating films (31, 33), and a process of repairing said areas comprising the following steps: removing the protective cover (27) and the top separating film (31), extracting the area, repairing the optical fiber, relocating the area and providing a new protective cover (27).
摘要:
A semiconductor structure including a single quantum well Ge1−x1−ySix1Sn/Ge1−x2Six2 heterostructure grown strain-free on Si(100) via a Sn1−xGex buffer layer is shown.
摘要翻译:包括单量子阱的半导体结构Ge 1-x1-y Si 1 Sn 1 / x 1 x 2 Si x 2 x 2 示出了在Si(100)上通过Sn 1-x N Ge x S x缓冲层生长无应变的异质结构。
摘要:
A method of monitoring structural damage in a composite structure manufactured by co-curing, co-bonding or secondary bonding of several sub-components (7, 8), using fibre optic Bragg grating sensors attached or embedded to or between (in the bonding line) said sub-components, comprising a first step of measuring the wavelength spectra (31, 33, 40) of said Bragg grating sensors at the end of the manufacturing of the part, and in a known load condition, considered as reference and a second step of identifying the occurrence of a failure of the structure and the progress of said failure detecting the release of the residual stresses/strains stored during the curing process by measuring changes (31 to 32, 33 to 34, 40 to 41) with respect to said reference wavelength spectra.
摘要:
Described herein are semiconductor structures comprising (i) a Si substrate; (ii) a buffer region formed directly over the Si substrate, wherein the buffer region comprises (a) a Ge layer having a threading dislocation density below about 105 cm−2; or (b) a Ge1-xSnx layer formed directly over the Si substrate and a Ge1-x-ySixSny layer formed over the Ge1-xSnx layer; and (iii) a plurality of III-V active blocks formed over the buffer region, wherein the first III-V active block formed over the buffer region is lattice matched or pseudomorphically strained to the buffer region. Further, methods for forming the semiconductor structures are provided and novel Ge1-x-ySixSny, alloys are provided that are lattice matched or pseudomorphically strained to Ge and have tunable band gaps ranging from about 0.80 eV to about 1.4O eV.
摘要:
A method for depositing an epitaxial Ge—Sn layer on a substrate in a CVD reaction chamber includes introducing into the chamber a gaseous precursor comprising SnD4 under conditions whereby the epitaxial Ge—Sn layer is formed on the substrate. the gaseous precursor comprises SnD4 and high purity H2 of about 15-20% by volume. The gaseous precursor is introduced at a temperature in a range of about 250° C. to about 350° C. Using the process device-quality Sn—Ge materials with tunable bandgaps can be grown directly on Si substrates.
摘要:
A method for depositing an epitaxial Ge—Sn layer on a substrate in a CVD reaction chamber includes introducing into the chamber a gaseous precursor comprising SnD4 under conditions whereby the epitaxial Ge—Sn layer is formed on the substrate. the gaseous precursor comprises SnD4 and high purity H2 of about 15-20% by volume. The gaseous precursor is introduced at a temperature in a range of about 250° C. to about 350° C. Using the process device-quality Sn—Ge materials with tunable bandgaps can be grown directly on Si substrates.
摘要:
Methods and apparatus for gathering image information from nanostructures includes a composite waveguide of conductive nanoparticles in a dielectric medium. The waveguide is irradiated with preferably coherent blue light to form a slow surface wave. The evanescent wave that is the “tail” of the surface wave exists outside the waveguide contiguous to its surface. The nanostructures are located to encounter the evanescent wave. The slowing of the wave that occurs in the waveguide reduces the wave's speed and wavelength sufficiently such that nanostructures can be imaged. Upon encountering the evanescent wave, the nanostructures radiate. This radiation causes a backward scattering from the structures and a forward perturbation of the wavefront of the surface wave. From the scattering and perturbation information about the physical characteristics of the nanostructures sufficient to form an image is derived.