Abstract:
Scan chains are used to detect faults in integrated circuits but with the size of today's circuits, it is difficult to detect and locate scan chain faults, especially when the scan data in and scan data out have been compressed. A method for debugging scan chains includes selecting a scan chain for debugging using a scan chain selection block and then providing scan test vectors to the selected scan chain. The scan test vectors undergo various scan test stages to generate scan response vectors. The scan response vectors are compared with ideal response vectors to identify a failing scan chain.
Abstract:
Testing of modules (such as Intellectual property (IP) cores) in integrated circuits (such as system on a chip units (SOCs)) in situations when different modules operate with different characteristics of a control signal. In an embodiment, another module (“subsystem module”) may be implemented to be tested with any of a multiple characteristics of a control signal, and a register which is programmable to generate a derived control signal of a desired characteristic from an original control signal, is provided. The derived control signal is provided to test the subsystem module. According to an aspect of the invention the desired characteristic may be determined, for example, to test a path between the two modules at the same speed as at which the path would be operated in a functional mode.
Abstract:
A scan test circuitry design imbedded on an SoC having the scan architecture of a VLCT platform is disclosed herein. This BIST circuitry design that is not limited in the number of scan test ports supported includes at least one scan chain group having a corresponding clock domain that couples to receive test stimulus data. Each scan chain group has a corresponding test mode signal to shift the test stimulus data at a shift clock rate derived from its corresponding clock domain. A controlling demultiplexer connects to each multiplexer unit within each scan chain group to provide control signals for shifting in the test stimulus. A clock control mechanism provides a control signal for each scan chain to shift test stimulus and capture resultant data. Furthermore, when a simultaneous test mode signal is enabled, the clock control mechanism couples to each scan chain to enable simultaneous capture of each scan chain group.
Abstract:
According to an aspect of present invention, modules designed to operate with different frequency in functional (normal) mode are tested using a sequential scan based technique at the respective frequencies. In one embodiment the interface logic connecting the two modules is tested for at-speed performance (i.e., the same speed at which the interface would be operated in functional mode during normal operation).
Abstract:
A system and method enhance observability of IC failures during burn-in tests. Scan automatic test pattern generation and memory built-in self-test patterns are monitored during the burn-in tests to provide a mechanism for observing selective scan chain outputs and memory BIST status outputs.
Abstract:
A mixed-signal core disclosed herein is designed for efficient concurrent testing analog, mixed-signal, and digital components. One tester may test all components and, thereby, reduce test time without losing full test coverage. An analog module includes all the analog and mixed-signal components of the mixed-signal core, while a first digital module includes digital components required for functional/parametric verification of the mixed-signal components within the analog module. A first virtual boundary connects the analog and the first digital modules to gate the signal transfer during testing. A second digital module includes the remaining digital components of the mixed-signal core, whereby a second virtual boundary separates it from the first digital module. This type of partitioning enables the mixed-signal core to have three modes of operation, wherein the first mode of operation provides digital interface characterization testing of the first and second digital module and analog characterization/trimming testing of the analog module. In the second mode of operation, concurrent testing of the analog module and the first and second digital module is conducted; wherein analog characterization/trimming testing is performed on the analog module and digital interface characterization testing is performed on the first digital module, while SCAN/BIST testing is performed on the second digital module. In the third mode of operation, non-concurrent testing of the analog module, the first digital module, and the second digital module is enabled; wherein SCAN/BIST testing of the first digital module and the second digital module is enabled, while the analog module is powered down.
Abstract:
Scan chains are used to detect faults in integrated circuits but with the size of today's circuits, it is difficult to detect and locate scan chain faults, especially when the scan data in and scan data out have been compressed. A method for debugging scan chains includes selecting a scan chain for debugging using a scan chain selection block and then providing scan test vectors to the selected scan chain. The scan test vectors undergo various scan test stages to generate scan response vectors. The scan response vectors are compared with ideal response vectors to identify a failing scan chain.
Abstract:
According to an aspect of present invention, modules designed to operate with different frequency in functional (normal) mode are tested using a sequential scan based technique at the respective frequencies. In one embodiment the interface logic connecting the two modules is tested for at-speed performance (i.e., the same speed at which the interface would be operated in functional mode during normal operation).
Abstract:
Testing of modules (such as Intellectual property (IP) cores) in integrated circuits (such as system on a chip units (SOCs)) in situations when different modules operate with different characteristics of a control signal. In an embodiment, another module (“subsystem module”) may be implemented to be tested with any of a multiple characteristics of a control signal, and a register which is programmable to generate a derived control signal of a desired characteristic from an original control signal, is provided. The derived control signal is provided to test the subsystem module. According to an aspect of the invention the desired characteristic may be determined, for example, to test a path between the two modules at the same speed as at which the path would be operated in a functional mode.
Abstract:
A system and method enhance observability of IC failures during burn-in tests. Scan automatic test pattern generation and memory built-in self-test patterns are monitored during the burn-in tests to provide a mechanism for observing selective scan chain outputs and memory BIST status outputs.