Abstract:
A Stirling cycle machine with a liquid fuel/gaseous fuel burner. The burner may include a preheater to capture the thermal energy of the exhaust. The burner directs the preheated air to each burner head, where it enters a prechamber. Each burner head includes a fuel nozzle that directs liquid or gaseous fuel into the prechamber. The prechamber is fluidically connected to a combustion chamber via a prechamber nozzle that has a smaller opening than the prechamber. The burner head ignites the fuel air mixture in the prechamber with an ignitor located above or within the prechamber. The flame is initially lit as a diffusion flame in the prechamber. The flame is pushed out of the prechamber into the combustion chamber by an increased air flow rate. The liquid fuel from the nozzle now evaporates in the prechamber and forms a prevaporized flame in the combustion chamber.
Abstract:
An external combustion engine including a burner element, a heater head, a piston cylinder containing a piston, a cooler and a crankcase. The crankcase includes a crankshaft, a piston rod connected to the piston, a drive mechanism for converting the linear motion of the piston rod to rotary motion of the crankshaft and a linear cross-head bearing that is connected rigidly to the piston rod at one end and to the drive mechanism at the other end. Also the external combustion engine includes a piston clearance seal and a piston rod seal unit that has floating rod seals. The piston includes a inner dome to reduce axial heat transfer via radiation and convection.
Abstract:
A regenerator for a thermal cycle engine and methods for its manufacture. The regenerator has a random network of fibers formed to fill a specified volume and a material for cross-linking the fibers at points of close contact between fibers of the network. A method for manufacturing a regenerator has steps of providing a length of knitted metal tape and wrapping a plurality of layers of the tape in an annular spiral.
Abstract:
A method for controlling the fuel-air ratio of a burner having a blower responsive to a blower drive signal for injecting air into the burner. The method is based at least on the concentration of a gas in an exhaust gas product of a combustion chamber of the burner and includes measuring the gas concentration in the exhaust gas product, deriving a gas concentration signal from the measured gas concentration, determining the fuel-air ratio from the gas concentration signal and the sign of the derivative of the gas concentration signal with respect to the blower drive signal, and controlling the fuel-air ratio by adjusting the air flow rate into the burner. The burner may be, for example, in a Stirling cycle engine.
Abstract:
A Stirling cycle machine with a liquid fuel/gaseous fuel burner. The burner may include a preheater to capture the thermal energy of the exhaust. The burner directs the preheated air to each burner head, where it enters a prechamber. Each burner head includes a fuel nozzle that directs liquid or gaseous fuel into the prechamber. The prechamber is fluidically connected to a combustion chamber via a prechamber nozzle that has a smaller opening than the prechamber. The burner head ignites the fuel air mixture in the prechamber with an ignitor located above or within the prechamber. The flame is initially lit as a diffusion flame in the prechamber. The flame is pushed out of the prechamber into the combustion chamber by an increased air flow rate. The liquid fuel from the nozzle now evaporates in the prechamber and forms a prevaporized flame in the combustion chamber.
Abstract:
An external combustion engine including a burner element, a heater head, a piston cylinder containing a piston, a cooler and a crankcase. The crankcase includes a crankshaft, a piston rod connected to the piston, a drive mechanism for converting the linear motion of the piston rod to rotary motion of the crankshaft and a linear cross-head bearing that is connected rigidly to the piston rod at one end and to the drive mechanism at the other end. Also the external combustion engine includes a piston clearance seal and a piston rod seal unit that has floating rod seals. The piston includes a inner dome to reduce axial heat transfer via radiation and convection.
Abstract:
An annular venturi burner assembly and Stirling engine. The annular venturi burner injects fuel into combustion air flowing axially through a port with an annular cross section. The fuel enters the annular cross-section from the outside diameter. The flow of air through the annular section creates suction that draws the fuel through the ports. A venturi bushing directs the flow of fuel to provide improved and more uniform mixing of fuel and air.
Abstract:
A piston rod seal unit. The piston rod seal unit includes a housing, a cylinder gland, and at least one floating rod seal assembly mounted in the cylinder gland, the floating rod seal assembly comprising at least one rod seal mounted onto the floating rod seal assembly.
Abstract:
A Stirling cycle machine. The machine includes at least one rocking drive mechanism which includes: a rocking beam having a rocker pivot, at least one cylinder and at least one piston. The piston is housed within a respective cylinder and is capable of substantially linearly reciprocating within the respective cylinder. Also, the drive mechanism includes at least one coupling assembly having a proximal end and a distal end. The linear motion of the piston is converted to rotary motion of the rocking beam. Also, a crankcase housing the rocking beam and housing a first portion of the coupling assembly is included. The machine also includes a working space housing the at least one cylinder, the at least one piston and a second portion of the coupling assembly. An airlock is included between the workspace and the crankcase and a seal is included for sealing the workspace from the airlock and crankcase. A burner and burner control system is also included for heating the machine and controlling ignition and combustion in the burner.
Abstract:
An improvement is provided to a pressurized close-cycle machine that has a cold-end pressure vessel and is of the type having a piston undergoing reciprocating linear motion within a cylinder containing a working fluid heated by conduction through a heater head by heat from an external thermal source. The improvement includes a heat exchanger for cooling the working fluid, where the heat exchanger is disposed within the cold-end pressure vessel. The heater head may be directly coupled to the cold-end pressure vessel by welding or other methods. A coolant tube is used to convey coolant through the heat exchanger.