摘要:
An apparatus includes a dielectric slab having first and opposing second major surfaces. A planar antenna element is located on the first major surface. A via formed through the dielectric slab is conductively connected to the antenna element. A plurality of solder bump pads is located on the second major surface and is configured to attach the dielectric slab to an integrated circuit.
摘要:
The present invention provides an interconnect. The interconnect comprises a pliable surface having a plurality of nanostructures disposed thereon, the pliable surface configured to allow the plurality of nanostructures to at least partially conform to a surface when the nanostructures come into contact therewith.
摘要:
A method and apparatus for forming an electrically and/or thermally conducting interconnection is disclosed wherein a first surface and a second surface are contacted with each other via a plurality of nanostructures disposed on at least one of the surfaces. In one embodiment, a first plurality of areas of nanostructures is disposed on a component in an electronics package such as, illustratively, a microprocessor. The first plurality of areas is then brought into contact with a corresponding second plurality of areas of nanostructures on a substrate, thus creating a strong friction bond. In another illustrative embodiment, a plurality of nanostructures is disposed on a component, such as a microprocessor, which is then brought into contact with a substrate. Intermolecular forces result in an attraction between the molecules of the nanostructures and the molecules of the substrate, thus creating a bond between the nanostructures and the substrate.
摘要:
An apparatus includes a dielectric slab having first and opposing second major surfaces. A planar antenna element is located on the first major surface. A via formed through the dielectric slab is conductively connected to the antenna element. A plurality of solder bump pads is located on the second major surface and is configured to attach the dielectric slab to an integrated circuit.
摘要:
A method of manufacturing comprising providing a semiconductor layer having metal adhesion layer on a planar surface of the semiconductor layer and an alloy layer on the metal adhesion layer, the alloy layer comprising an alloy of gold and a non-gold metal. The method comprises removing a portion of the non-gold metal from the alloy layer to form a porous gold layer. The method comprises applying pressure between the porous gold layer and a metal layer to form a bond between the semiconductor layer and the metal layer.
摘要:
A coupler assembly for an optical backplane system having a backplane and two or more circuit packs connected to that backplane. Each circuit pack has an optical transceiver and the backplane has an optical pipe (e.g., an array of waveguides) adapted to guide optical signals between the transceivers of different circuit packs. A coupler assembly is provided for each transceiver to couple light between that transceiver and the optical pipe. Advantageously, the coupler assembly has a movable optical element that can accommodate possible misalignment between the backplane and the circuit pack. In one embodiment, the movable optical element is an array of MEMS mirrors, each mirror adapted to direct light between an optical transmitter or receiver and the corresponding waveguide of the optical pipe. In another embodiment, the movable optical element is an array of flexible optical fibers, each coupled between an optical transmitter or receiver and the corresponding waveguide of the optical pipe and having an angled surface adapted to couple light between said fiber and waveguide.
摘要:
An apparatus that comprises an electronic device package 102. The package includes an electronic device 105 on a first planar substrate 110, and, a second planar substrate 112 bonded to the first planar substrate so as to form an interior chamber 115 housing the electronic device. The package includes a plurality of electrically conductive pins 120, each of the pins passing through a hole 125 in one of the first and second planar substrates. A first end 130 of each pin is located in the interior chamber and is electrically coupled to the electronic device. A second end 132 of each pin is located on an exterior side 135 of the one of the first and second substrates. An inorganic sealant 140 surrounds at least one of the first end or the second end for each of the pins.
摘要:
A method and apparatus for forming an electrically and/or thermally conducting interconnection is disclosed wherein a first surface and a second surface are contacted with each other via a plurality of nanostructures disposed on at least one of the surfaces. In one embodiment, a first plurality of areas of nanostructures is disposed on a component in an electronics package such as, illustratively, a microprocessor. The first plurality of areas is then brought into contact with a corresponding second plurality of areas of nanostructures on a substrate, thus creating a strong friction bond. In another illustrative embodiment, a plurality of nanostructures is disposed on a component, such as a microprocessor, which is then brought into contact with a substrate. Intermolecular forces result in an attraction between the molecules of the nanostructures and the molecules of the substrate, thus creating a bond between the nanostructures and the substrate.
摘要:
The invention includes a method and apparatus for controlling curvatures of light directing devices. The apparatus includes a first substrate portion having formed therein a plurality of cavities, and a substantially flexible membrane disposed over the cavities for forming a respective plurality of light directing mechanisms, the light directing mechanisms disposed over the cavities. The respective curvatures of the light directing mechanisms are set using a pressure difference across each of the membrane portions disposed over the cavities. The respective curvatures of the light directing mechanisms may be controllably adjusted during operation of the light directing mechanisms.
摘要:
The invention includes an apparatus for receiving an optical signal from an optical input means and directing the optical signal to one of a plurality of optical outputs means. The apparatus includes a solid signal propagating material having a refractive index greater than the refractive index of air. The solid signal propagating material includes a first transparent surface optically cooperating with the optical input and output means, a second transparent surface optically cooperating with a first light directing mechanism, and a reflective surface optically cooperating with the first light directing mechanism. A first reflecting component of the light directing mechanism directs a received optical signal to a second reflecting component of the light directing mechanism via the reflective surface of the signal propagating material. The second reflecting component of the light directing mechanism directs the respective incident optical signal to the selected one of the plurality of optical outputs means.