Abstract:
A method of manufacturing a thin film transistor array panel is provided, which includes: depositing an amorphous silicon layer on an insulating substrate; converting the amorphous silicon layer to a polysilicon layer by a plurality of laser shots using a mask; forming a gate insulating layer on the polysilicon layer; forming a plurality of gate lines on the gate insulating layer; forming a first interlayer insulating layer on the gate lines; forming a plurality of data lines on the first interlayer insulating layer; forming a second interlayer insulating layer on the data lines; and forming a plurality of pixel electrodes on the second interlayer insulating layer, wherein the mask comprises a plurality of transmitting areas and a plurality of blocking areas arranged in a mixed manner.
Abstract:
A device for irradiating a laser beam onto an amorphous silicon thin film formed on a substrate. The device includes: a stage mounting the substrate; a laser oscillator for generating a laser beam; a projection lens for focusing and guiding the laser beam onto the thin film; a reflector for reflecting the laser beam guided onto the thin film; a controller for controlling a position of the reflector; and an absorber for absorbing the laser beam reflected by the reflector.
Abstract:
An array substrate includes a base substrate, a switching element, and a pixel electrode. The switching element is on the base substrate. The switching element includes a poly silicon pattern having at least one block. Grains are formed in each of the at least one block that are extended in a plurality of directions. The pixel electrode is electrically connected to the switching element. Therefore, current mobility and design margin of the switching element are improved.
Abstract:
An array substrate includes a base substrate, a plurality of gate lines, a plurality of data lines and a pixel matrix. The plurality of gate lines and the plurality of data lines define pixel areas. The pixel matrix is formed on each pixel area, and includes a plurality of pixel columns and pixel rows. Each pixel column has a first pixel group and a second pixel group. The first pixel group is electrically connected to a first gate line adjacent to the pixel column. The second pixel group is electrically connected to a second gate line adjacent to the pixel column. Each pixel row is electrically connected to one data line adjacent to the pixel column.
Abstract:
A thin film transistor and a liquid crystal display, in which a gate electrode is formed to include at least one portion extending in a direction perpendicular to a gain growing direction in order to make electrical charge mobility of TFTs uniform without increasing the size of the driving circuit. A thin film transistor according to the present invention includes a semiconductor pattern a thin film of poly-crystalline silicon containing grown grains on the insulating substrate. The semiconductor pattern includes a channel region and source and drain regions opposite with respect to the channel region. A gate insulating layer covers the semiconductor pattern. On the gate insulating layer, a gate electrode including at least one portion extending in a direction crossing the growing direction of the grains and overlapping the channel region is formed. In a liquid crystal display, a plurality of thin film transistors forming a data driver circuit include thin films of polycrystalline silicon formed by sequential lateral solidification, at least one portion of a gate electrode of each thin film transistor extends in a direction crossing the grain growing direction, and at least one of the plurality of thin film transistors has a gate electrode having a pattern different from other thin film transistors.
Abstract:
An array substrate includes a base substrate, a switching element, and a pixel electrode. The switching element is on the base substrate. The switching element includes a poly silicon pattern having at least one block. Grains are formed in each of the at least one block that are extended in a plurality of directions. The pixel electrode is electrically connected to the switching element. Therefore, current mobility and design margin of the switching element are improved.
Abstract:
A mask for crystallization of amorphous silicon to polysilicon is provided. The mask includes a plurality of slit patterns for defining regions to be illuminated. The plurality of slit patterns are formed along a longitudinal first direction and the mask moves along a longitudinal second direction. The first longitudinal direction is substantially perpendicular to the second longitudinal direction. Each of the split patterns is deviated apart by substantially a same distance from another. Thus, the polysilicon using the mask
Abstract:
A device for irradiating a laser beam onto an amorphous silicon thin film formed on a substrate. The device includes: a stage mounting the substrate; a laser oscillator for generating a laser beam; a projection lens for focusing and guiding the laser beam onto the thin film; a reflector for reflecting the laser beam guided onto the thin film; a controller for controlling a position of the reflector; and an absorber for absorbing the laser beam reflected by the reflector.
Abstract:
A mask for crystallization of amorphous silicon to polysilicon is provided. The mask includes a plurality of slit patterns for defining regions to be illuminated. The plurality of slit patterns are formed along a longitudinal first direction and the mask moves along a longitudinal second direction. The first longitudinal direction is substantially perpendicular to the second longitudinal direction. Each of the split patterns is deviated apart by substantially a same distance from another. Thus, the polysilicon using the mask are grown to be isotropic with respect to the horizontal and vertical directions.
Abstract:
A crystallization mask for laser illumination for converting amorphous silicon into polysilicon is provided, which includes: a plurality of transmissive areas having a plurality of first slits for adjusting energy of the laser illumination passing through the mask; and an opaque area.