Abstract:
The present invention makes it possible to obtain: a semiconductor device capable of forming a highly reliable upper wire without a harmful influence on the properties of the magnetic material for an MTJ device; and the manufacturing method thereof. Plasma treatment is applied with reducible NH3 or H2 as pretreatment. Thereafter, a tensile stress silicon nitride film to impose tensile stress on an MTJ device is formed over a clad layer and over an interlayer dielectric film where the clad layer is not formed. Successively, a compressive stress silicon nitride film to impose compressive stress on the MTJ device is formed over the tensile stress silicon nitride film. The conditions for forming the tensile stress silicon nitride film and the compressive stress silicon nitride film are as follows: a parallel plate type plasma CVD apparatus is used; the RF power is set in the range of 0.03 to 0.4 W/cm2; and the film forming temperature is set in the range of 200° C. to 350° C.
Abstract:
To provide a manufacturing method of a semiconductor device capable of forming, as a protective film of an MTJ element, a silicon nitride film having good insulation properties without deteriorating the properties of the MTJ element. The method of the invention includes steps of forming a silicon nitride film over the entire surface including an MTJ element portion (MTJ element and an upper electrode) while using a parallel plate plasma CVD apparatus as a film forming apparatus and a film forming gas not containing NH3 but composed of SiH4/N2/helium (He). The film forming temperature is set at from 200 to 350° C. More ideally, a flow rate ratio of He to SiH4 is set at from 100 to 125.
Abstract:
In the semiconductor device which has partial trench isolation as isolation between elements formed in an SOI substrate, resistance reduction of the source drain of a transistor and reduction of leakage current are aimed at. A MOS transistor is formed in the active region specified by the isolation insulating layer in the SOI layer formed on the buried oxide film layer (BOX layer). An isolation insulating layer is a partial trench isolation which has not reached a BOX layer, and source and drain regions include the first and the second impurity ion which differs in a mass number mutually.
Abstract:
In a semiconductor device, a body thick film transistor and a body thin film transistor having a different body film thickness are formed on the same SOI substrate (silicon support substrate, buried oxide film and silicon layer). The body film is formed to be relatively thick in the body thick film transistor, which has a recess structure where the level of the surface of the source/drain regions is lower than the level of the surface of the body region, and thus, the SOI film in the source/drain regions is formed to be as thin as the SOI film in the body thin film transistor. On the other hand, the entirety of the SOI film is formed to have a relatively thin film thickness in the body thin film transistor. In addition, the source/drain regions are formed to penetrate through the silicon layer.
Abstract:
In the semiconductor device which has partial trench isolation as isolation between elements formed in an SOI substrate, resistance reduction of the source drain of a transistor and reduction of leakage current are aimed at. A MOS transistor is formed in the active region specified by the isolation insulating layer in the SOI layer formed on the buried oxide film layer (BOX layer). An isolation insulating layer is a partial trench isolation which has not reached a BOX layer, and source and drain regions include the first and the second impurity ion which differs in a mass number mutually.
Abstract:
In a semiconductor device, a gate electrode, an impurity diffused region, a body potential fixing region, a first insulator, and a dummy gate electrode are provided on top of an SOI substrate consisting of an underlying silicon substrate, a buried insulator, and a semiconductor layer. The impurity diffused region is a region formed by implanting an impurity of a first conductivity type into the semiconductor layer around the gate electrode. The body potential fixing region is a region provided in the direction of an extension line of the length of the gate electrode and implanted with an impurity of a second conductivity type. The first insulator is formed at least in the portion between the body potential fixing region and the gate electrode. The dummy gate electrode is provided on the first insulator between the body potential fixing region and the gate electrode.
Abstract:
An SOI substrate is formed of a silicon oxide substrate and a silicon film. A surface of the silicon film is oxidized and a silicon oxide film is thereby formed. A polycrystalline silicon and a silicon nitride film are formed on the silicon oxide film in this order. Then, a trench is formed in a region. The trench is filled with an insulating material, e.g., a silicon oxide film.
Abstract:
The invention relates to improvements in a method of manufacturing a semiconductor device in which deterioration in a transistor characteristic is avoided by preventing a channel stop implantation layer from being formed in an active region. After patterning a nitride film (22), the thickness of an SOI layer 3 is measured (S2) and, by using the result of measurement, etching conditions (etching time and the like) for SOI layer 3 are determined (S3). To measure the thickness of SOI layer 3, it is sufficient to use spectroscopic ellipsometry which irradiates the surface of a substance with linearly polarized light and observes elliptically polarized light reflected by the surface of a substance. The etching condition determined is used and a trench TR2 is formed by using patterned nitride film 22 as an etching mask (S4).
Abstract:
In a semiconductor device, a body thick film transistor and a body thin film transistor having a different body film thickness are formed on the same SOI substrate (silicon support substrate, buried oxide film and silicon layer). The body film is formed to be relatively thick in the body thick film transistor, which has a recess structure where the level of the surface of the source/drain regions is lower than the level of the surface of the body region, and thus, the SOI film in the source/drain regions is formed to be as thin as the SOI film in the body thin film transistor. On the other hand, the entirety of the SOI film is formed to have a relatively thin film thickness in the body thin film transistor. In addition, the source/drain regions are formed to penetrate through the silicon layer.
Abstract:
To provide a semiconductor device that has an improved adhesion between a bottom conductive layer and a protection film protecting an MTJ element. This semiconductor device includes a bottom electrode formed over a semiconductor substrate, an MTJ element part formed over a part of the bottom electrode by lamination of a bottom magnetic film, an insulating film, a top magnetic film, and a top electrode in this order, and a protection film formed over the bottom electrode so as to cover the MTJ element part, wherein the bottom electrode is formed by amorphized metal nitride and the protection film is formed by an insulating film containing nitrogen.