Abstract:
Disclosed is the preparation of compositions which are blends of certain types of hydrogenated ethylene-dicyclopentadiene (E/DCPD) copolymers in combination with elastomeric polymers. An E/DCPD copolymer and an elastomeric polymer are co-dissolved in a common liquid reaction medium which is then subjected to hydrogenation conditions. These hydrogenation conditions serve to hydrogenate in-situ at least a portion of the residual double bonds of the E/DCPD copolymer component and possibly also eliminate any residual unsaturation which might be present in the elastomeric polymers. This combination of materials which has been hydrogenated in-situ can then be co-precipitated to form a polymer composition which can be molded into polyolefin materials of improved structural, thermal and mechanical properties with desirable impact resistance.
Abstract:
In a process for producing a functionalized polyalkenamer, at least one monomer comprising a monocyclic olefin having at least one pendant alkyl group bonded thereto, wherein the pendant alkyl group has at least two carbon atoms and is substituted with a polar moiety spaced by at least one carbon atom from the monocyclic olefin, is contacted with a polymerization catalyst under conditions effective to effect ring opening polymerization of the monocyclic olefin and produce the functionalized polyalkenamer.
Abstract:
A process for making non-phthalate, 1,2-phenylene oxo-diester plasticizers for polymer compositions, by selectively hydrogenating naphthalene to form a partially hydrogenated naphthalene, oxygenating said partially hydrogenated naphthalene to form phenylene diacids, and esterifying said phenylene diacids with oxo-alcohols to form 1,2-phenylene oxo-diesters. Also a process for making phenylene oxo-diester plasticizers by selectively brominating xylenes to form bisbromomethylbenzene, catalytic carboalkoxylation of the bromo-compound to form phenylene diacetate, followed by transesterification to form the phenylene oxo-diester.
Abstract:
Provided are compositions, processes for making, and processes for using neoalkyl polyol esters and triglycerides as plasticizers. In one form, a neoalkylester triglyceride plasticizers can be produced by (i) drying a polyol feedstream; (ii) contacting in a reactor the dried polyol feedstream with a neoacid feedstream under effective temperature, pressure and time to form a neoalkylester plasticizer effluent stream, and (iii) purifying the neoalkylester plasticizer effluent stream to remove unreacted polyol and unreacted neoacid to form a neoalkylester plasticizer. Such plasticizers can be phthalate-free and provide outstanding properties including a suitable melting or pour point, glass transition temperature, low volatility, increased compatibility, increased hydrolytic stability, and excellent low temperature properties in a range of polymeric resins.
Abstract:
This invention relates to a polyalpha-olefin (and hydrogenated analogs thereof) comprising more than 50 mole % of one or more C5 to C24 alpha-olefin monomers where the polyalpha-olefin has: a) 40 mole % or more of mm triads, b) a Bromine number of Y or greater, where Y is equal to 89.92*(V)′°5863, where V is the Kinematic Viscosity of the polyalpha-olefin measured at 100° C. in cSt, and c) 1,2 disubstituted olefins present at 7 mole % or more, preferably having Z mole % or more of units represented by the formula: where j, k and m are each, independently, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22, n is an integer from 1 to 350, and where Z=8.420*Log(V)−4.048, where V is the kinematic viscosity of the polyalpha-olefin measured at 1000 C in cSt This invention also relates to process to produce such polyalpha-olefins.
Abstract:
A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at 0.5:1 (approaching 1:1) may be achieved.
Abstract:
Provided are processes for making, and processes for using triglycerides as plasticizers. Mixed triglyceride plasticizers can be produced by recovery of linear or branched C4 to C13 aldehydes from a hydroformylation product, oxidation to the acid with oxygen and/or air, recovery of the resulting acid, and esterification with a crude glycerol, wherein the total carbon number of the triester groups is from 20 to 25 for greater than or equal to 45 wt % of the plasticizer. The product selectivity obtained from esterifying with crude glycerol is comparable to that of esterifying with pure glycerol. Such plasticizers can be phthalate-free and provide outstanding properties including a suitable melting or glass transition or pour point, low volatility, increased compatibility, and excellent low temperature properties in a range of polymeric resins.
Abstract:
In a process for producing a functionalized polyalkenamer, at least one monomer comprising a monocyclic olefin having at least one pendant alkyl group bonded thereto, wherein the pendant alkyl group has at least two carbon atoms and is substituted with a polar moiety spaced by at least one carbon atom from the monocyclic olefin, is contacted with a polymerization catalyst under conditions effective to effect ring opening polymerization of the monocyclic olefin and produce the functionalized polyalkenamer.
Abstract:
This invention relates to a polymer composition comprising a blend comprising: (a) greater than 30 wt (based upon the weight of the composition) of a cyclic olefin polymer having a Tg greater than 60° C. and having a Tm heat of fusion (ΔHf) of 40 J/g or less selected from the group consisting of: i) copolymers comprising at least one acyclic olefin and at least 15 mole % of one or more cyclic olefins; ii) partially or completely hydrogenated copolymers comprising at least one acyclic olefin and at least 15 mole % of one or more cyclic olefins; iii) metathesis copolymers comprising two or more cyclic olefins; iv) partially or completely hydrogenated metathesis copolymers comprising two or more cyclic olefins; v) metathesis homopolymers comprising cyclic olefins; vi) partially or completely hydrogenated metathesis homopolymers comprising cyclic olefins; and vii) mixtures thereof; (b) from 1 to 50 wt % (based upon the weight of the composition) of an acyclic olefin polymer modifier having a glass transition temperature of less than 0° C.; (c) from 0.1 to 50 wt % (based upon the weight of the composition) of a non-functionalized plasticizer having a kinematic viscosity at 100° C. of 3 to 3000 cSt, a viscosity index of 120 or more, a pour point of 0° C. or less and a flash point of 200° C. or more.