Abstract:
This invention relates to a polyalpha-olefin (and hydrogenated analogs thereof) comprising more than 50 mole % of one or more C5 to C24 alpha-olefin monomers where the polyalpha-olefin has: a) 40 mole % or more of mm triads, b) a Bromine number of Y or greater, where Y is equal to 89.92*(V)′°5863, where V is the Kinematic Viscosity of the polyalpha-olefin measured at 100° C. in cSt, and c) 1,2 disubstituted olefins present at 7 mole % or more, preferably having Z mole % or more of units represented by the formula: where j, k and m are each, independently, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22, n is an integer from 1 to 350, and where Z=8.420*Log(V)−4.048, where V is the kinematic viscosity of the polyalpha-olefin measured at 1000 C in cSt This invention also relates to process to produce such polyalpha-olefins.
Abstract:
The novel process provides latices of homo- and copolymers of chloroprene and of one or more further copolymerizable monomers at a higher reaction rate and hence in an improved space-time yield. The latices obtained have a high gel content, distinctly lower levels of by-products, in particular of chloroprene dimer, than prior art products, and are useful, if appropriate in concentrated form, for a wide variety of applications.
Abstract:
This invention is based upon the unexpected discovery that the reactivity of the most important monomers commonly used in synthesizing tackifier resins with aluminum halide catalysts can be enhanced by conducting the polymerization in the presence of an allylic halide. For instance, the conversions of 2-methyl-2-butene, cis-piperylene, and cyclopentene that are attained in polymerizations that are catalyzed with aluminum halide catalysts are increased by conducting the polymerization in the presence of an allylic halide, such as allyl chloride. Increased monomer conversion is of great commercial importance because it leads to an increased level of efficiency and reactor capacity. The present invention more specifically discloses a process for synthesizing a resin having characteristics that make it particularly useful as a tackifier resin, said process comprising the polymerization of an unsaturated hydrocarbon monomer mixture in the presence of aluminum halide and an allylic halide, wherein the unsaturated hydrocarbon monomer mixture is comprised of unsaturated hyrdocarbon monomers containing from about 4 to about 18 carbon atoms. The subject invention further reveals a process for synthesizing a resin having characteristics that make it particularly useful as a tackifier resin, said process comprising the polymerization of an unsaturated hydrocarbon monomer mixture in the presence of aluminum halide and an allylic halide, wherein the unsaturated hydrocarbon monomer mixture is comprised of monomers including but not limited to 2-methyl-2-butene, cis-piperylene, trans-piperylene, cyclopentene, and additional unsaturated hyrdocarbon monomers containing from about 4 to about 18 carbon atoms.
Abstract:
Object of the invention is a process for polymerizing chloroprene in aqueous emulsion in a certain apparatus which prevents formation of deposits and so-called "popcorn" polymers.
Abstract:
Allyl halides are polymerized by a catalyst, silicic or silicoformic acids, to produce poly(allyl halide) polymer and poly(allyl alcohol) polymer.
Abstract:
A flame-retardant resin composition comprises a base resin (A), such as a polyamide resin, and an aromatic organophosphorus oligomer or polymer.
Abstract:
A novel process is used to prepare synthetic rubbers (B) which feature very narrow molecular weight distribution and a correspondingly low value for the polydispersity index. The preparation process encompasses the treatment of a synthetic rubber with ultrasound, where the resultant synthetic rubber (B) has a lower weight-average molecular weight (Mw) than the synthetic rubber (A) used. The resultant synthetic rubbers (B) have excellent suitability for processing via extruder processes or injection-moulding processes.
Abstract:
This invention is based upon the unexpected discovery that the reactivity of the most important monomers commonly used in synthesizing tackifier resins with aluminum halide catalysts can be enhanced by conducting the polymerization in the presence of an allylic halide. For instance, the conversions of 2-methyl-2-butene, cis-piperylene, and cyclopentene that are attained in polymerizations that are catalyzed with aluminum halide catalysts are increased by conducting the polymerization in the presence of an allylic halide, such as allyl chloride. Increased monomer conversion is of great commercial importance because it leads to an increased level of efficiency and reactor capacity. The present invention more specifically discloses a process for synthesizing a resin having characteristics that make it particularly useful as a tackifier resin, said process comprising the polymerization of an unsaturated hydrocarbon monomer mixture in the presence of aluminum halide and an allylic halide, wherein the unsaturated hydrocarbon monomer mixture is comprised of unsaturated hyrdocarbon monomers containing from about 4 to about 18 carbon atoms, and wherein said process is conducted in the absence of tantalum compounds. The subject invention further reveals a process for synthesizing a resin having characteristics that make it particularly useful as a tackifier resin, said process comprising the polymerization of an unsaturated hydrocarbon monomer mixture in the presence of aluminum halide and an allylic halide, wherein the unsaturated hydrocarbon monomer mixture is comprised of monomers including but not limited to 2-methyl-2-butene, cis-piperylene, trans-piperylene, cyclopentene, and additional unsaturated hyrdocarbon monomers containing from about 4 to about 18 carbon atoms, wherein said process is conducted in the absence of tantalum compounds.