Abstract:
Provided is a surface treatment technique whereby excellent adhering function, excellent reacting function and rich diversity can be established. A surface treatment method that comprises applying a solution containing compound (α) to a substrate and thus providing compound (α) thereon, wherein: said compound (α) has at least an M-OH group and/or a group capable of forming M-OH (wherein M represents a metal atom), an amino group and a triazine ring; one or more said M-OH groups and/or groups capable of forming M-OH (wherein M represents a metal atom) are present; said amino group is bonded to a terminal; one or more said amino groups bonded to the terminal are present; and one or more said triazine rings are present.
Abstract:
A base material for adhesion to be adhered to a solid body includes a substrate made from metal, polymer resin, glass or ceramics whose surface is adhesive to the solid body by silyl-ether-linkage that at least one active silyl group selected from the group consisting of a hydrosilyl-containing silyl group, a vinyl-containing silyl group, an alkoxysilyl-containing silyl group and a hydrolytic group-containing silyl group having reactivity with a reactive group on the surface of the solid body is bound to a dehydrogenated residue of hydroxyl group on the surface of the substrate.
Abstract:
A mobile terminal is provided. A scanner unit reads code information attached to a commodity. A RAM stores the code information read by the scanner unit as commodity-for-purchase information. The scanner unit, to confirm whether the commodity-for-purchase information stored in the RAM is correct, the scanner unit reads the code information of one part of the commodity-for-purchase. A CPU switches from reading for storage to reading for confirmation. It is determined whether information contained in the code information read by the scanner unit is stored in the RAM. A display displays a result of the determination.
Abstract:
Provided is a laminated body which solves, all at once, the issues of conventional methods, such as adhesiveness to a board having low surface roughness, stress concentration relaxing, reliability improvement, high adhesiveness (especially, that of a conductor layer), heat resistance, almighty characteristics (being adherable irrespective of the type of an adhesive), in manufacture of laminated bodies. The laminated body is formed by having an entropically elastic molecular adhesive layer between two boards, and the entropically elastic molecular adhesive layer is composed of an entropically elastic material layer, and a layer of a molecular adhesive having a group which can be bonded to the entropically elastic material layer.
Abstract:
For the production of acrylonitrile by ammoxidation of propylene, there is provided a process capable of giving a high yield and maintaining such an effect for a long period of time. In producing acrylonitrile by ammoxidation of propylene, a fluidized bed catalyst is used and the reaction is carried out while appropriately adding a molybdenum-containing material, wherein the fluidized bed catalyst, in which iron antimonate exists as a crystal phase, contains molybdenum, bismuth, iron, potassium, an M component, an N component and silica as essential components, and has a number of Mo/Me of from 0.8 to 1, wherein the Mo/Me is a number obtained by dividing the product 20 of a valence number of molybdenum as molybdic acid and an atomic ratio of molybdenum by the sum of respective products of respective valence numbers and atomic ratios of respective metal molybdate-producible metal elements other than iron antimonate, that is, bismuth, iron, potassium, the M component element, the N component element and a T component element.
Abstract:
A catalyst composition represented by the following empirical formula which is useful in production of unsaturated nitrites by ammoxidation: Mo10BiaFebSbcNidCreFfGgHhKkXxYyOi(SiO2)j wherein F represents at least one element selected from the group consisting of zirconium, lanthanum and cerium, G represents at least one element selected from the group consisting of magnesium, cobalt, manganese and zinc, H represents at least one element selected from the group consisting of vanadium, niobium, tantalum and tungsten, x represents at least one element selected from the group consisting of phosphorus, boron, and tellurium, Y represents at least one element selected from the group consisting of lithium, sodium, rubidium and cesium, the suffixes a-k, x and y represent a ratio of atoms or atomic groups, and a=0.1-3, b=0.3-15, c=0-20, d=3-8, e=0.2-2, f=0.05-1, e/f>1, g=0-5, h=0-3, k=0.1-1, x=0-3, y=0-1, i is the number of oxygen produced by bonding of the above respective components, and j=0-100.
Abstract:
A process for producing a molybdenum-containing metal oxide fluid-bed catalyst comprising, as essential components,(i) at least one element selected from the group consisting of iron, bismuth, and tellurium,(ii) molybdenum, and(iii) silica,which comprises (a) adjusting an aqueous slurry containing a raw material providing element (i), a molybdenum compound, a silica sol, and a chelating agent capable of inhibiting gelation of the slurry of a pH of at least 6, or (b) adjusting an aqueous slurry containing a raw material providing element (i), a molybdenum compound and a chelating agent capable of inhibiting gelation to a pH of at least 6 and mixing the slurry with a silica sol,then spray drying the thus pH-adjusted aqueous slurry, andcalcining the resulting particles.
Abstract:
A process for producing acrylonitrile by the vapor-phase catalytic ammoxidation of propylene using a catalyst whose composition is represented by the empirical formula (I):P.sub.q R.sub.r Mo.sub.10 Bi.sub.a Fe.sub.b Sb.sub.c Ni.sub.d O.sub.e (I)whereR is Na and/or K;subscripts q, r, a, b, c, d and e represent atomic ratios, and when the atomic ratio of Mo is 10, q=0 to 3, r=0.01 to 1.5, a=0.1 to 3, b=0.1 to 2.5, c=5 to 30, d=4 to 8, and e=a number corresponding to the oxide formed by chemical combination of the above-described components.
Abstract:
A heat transfer promoter composition comprises a triazine-dithiol derivative represented by the general formula ##STR1## wherein R represents --NHR' or --NR'.sub.2 wherein: R' is a hydrocarbon group; M is selected from the group consisting of hydrogen, alkali metals, and alkaline earth metals; and at least one of M groups is alkaline metal or alkaline earth metal. This heat transfer promotor is applied to that surface of a condenser tube to be contacted by a vapor to be condensed.
Abstract:
This invention provides an electronic scale printer, and more particularly an electronic scale printer in which a printer is connected electrically to the electronic scale used in a department store or supermarket etc., and required data are printed on a printing sheet under an instruction from the electronic scale and issued from the printer. The invention provides a printer capable of issuing both a label and a receipt through one printing means and more particularly an electronic scale printer in which either a label or a receipt corresponding to the kind of printing sheet stored in a cassette is printed and issued under proper replacement of the cassette having printing sheet for label stored therein with a cassette having a printing sheet for receipt stored therein.