Abstract:
An electronic apparatus and an operating method of the electronic apparatus are provided. The electronic apparatus includes a display unit, a base, a touch pad and a processing unit. The base is coupled to the display unit. The touch pad is disposed on the base, includes touch areas and receives a touch action performed by the user on any touch area. The processing unit is coupled to the touch pad and sets a display frame of the display unit into display areas according to a position of each touch area, so that each touch area has the corresponding display area at a corresponding position on the display unit. After the touch pad received a first touch event, the processing unit obtains a first touch area where the first touch event is generated, and displays a first user interface in a first display area corresponding to the first touch area.
Abstract:
Methods and systems to support input output (IO) communications may include an IO connector having a housing with surfaces defining a paddle card region, and a set of compressible contacts extending vertically through the housing into the paddle card region. In addition, an IO interconnect can include a cable portion and at least one end portion coupled to the cable portion. The end portion may include a paddle card having a circuit board with a set of contacts disposed on a bottom surface of the circuit board. The end portion can also include an asymmetric metal shell having a configuration that encloses at least a portion of the paddle card and exposes the set of contacts.
Abstract:
A driving circuit of an organic light emitting device includes a switch module, a capacitor, and a driving unit. The switch module includes a first switch unit and a second switch unit. The first switch unit is coupled to a data line. The second switch unit is coupled to the organic light emitting device. During a programming period, the first switch unit is turned on and the second switch unit is turned off; and during an emission period, the first switch unit is turned off and the second switch unit is turned on. The capacitor is coupled to the first switch unit for being charged to a data voltage according to a data current of the data line during the programming period. The driving unit is used for generating a driving current to drive the organic light emitting device according to the data voltage during the emission period.
Abstract:
A transistor includes a gate electrode disposed over a substrate. At least one composite strain structure is disposed adjacent to a channel below the gate electrode. The at least one composite strain structure includes a first strain region within the substrate. A second strain region is disposed over the first strain region. At least a portion of the second strain region is disposed within the substrate.
Abstract:
An asymmetric differential inductor includes first and second conductive wirings spirally disposed on a substrate having a first input terminal, a second input terminal, a ground terminal, and a central conductive wiring. The central conductive wiring has a central contact connecting the ground terminal and a central end away from the ground terminal. The first conductive wiring extends across the central conductive wiring and has a first contact connecting the first input terminal and a first end connecting the central end. The second conductive wiring extends across the central conductive wiring and interlaces with the first conductive wiring and has a second contact connecting the second input terminal and a second end connecting the central end. Corresponding portions of wiring sections of the first and second conductive wirings at opposite sides of the central conductive wiring are asymmetrical to one another to thereby save substrate space and facilitate circuit layout.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device that includes providing a semiconductor substrate, forming a gate structure over the substrate, forming a material layer over the substrate and the gate structure, implanting Ge, C, P, F, or B in the material layer, removing portions of the material layer overlying the substrate at either side of the gate structure, forming recesses in the substrate at either side of the gate structure, and depositing a semiconductor material in the recesses by an expitaxy process.
Abstract:
A composite semiconductor structure and method of forming the same are provided. The composite semiconductor structure includes a first silicon-containing compound layer comprising an element selected from the group consisting essentially of germanium and carbon; a silicon layer on the first silicon-containing compound layer, wherein the silicon layer comprises substantially pure silicon; and a second silicon-containing compound layer comprising the element on the silicon layer. The first and the second silicon-containing compound layers have substantially lower silicon concentrations than the silicon layer. The composite semiconductor structure may be formed as source/drain regions of metal-oxide-semiconductor (MOS) devices.
Abstract:
A symmetric differential inductor structure includes first, second, third and fourth spiral conductive wirings disposed in four quadrants of a substrate, respectively. Further, a fifth conductive wiring connects the first and fourth spiral conductive wirings, and a sixth conductive wiring connects the second and third spiral conductive wirings. The first and second spiral conductive wirings are symmetric but not intersected with one another, and the third and fourth spiral conductive wirings are symmetric but not intersected with one another. Therefore, the invention attains full geometric symmetry to avoid using conductive wirings that occupy a large area of the substrate as in the prior art and to thereby increase the product profit and yield.
Abstract:
A transistor array substrate includes a substrate, a plurality of scan lines, a plurality of data lines and a plurality of pixel units. The scan lines and the data lines are all disposed on the substrate. Each pixel unit includes a transistor and a pixel electrode. The transistor is electrically connected to the pixel electrodes, the scan lines and the data lines. Each transistor includes a gate, a drain, a source, a metal-oxide-semiconductor layer and a channel protective layer. A channel gap exists between the drain and the source. The metal-oxide-semiconductor layer has a pair of side edges opposite to each other and the side edges are located at two ends of the channel gap. The channel protective layer covers the metal-oxide-semiconductor layer in the channel gap and protrudes from the side edges of the metal-oxide-semiconductor layer.
Abstract:
A method of forming an integrated circuit structure includes providing a wafer including a substrate and a semiconductor fin at a major surface of the substrate, and performing a deposition step to epitaxially grow an epitaxy layer on a top surface and sidewalls of the semiconductor fin, wherein the epitaxy layer includes a semiconductor material. An etch step is then performed to remove a portion of the epitaxy layer, with a remaining portion of the epitaxy layer remaining on the top surface and the sidewalls of the semiconductor fin.