摘要:
Disclosed is an integrated circuit with multiple semiconductor fins having different widths and variable spacing on the same substrate. The method of forming the circuit incorporates a sidewall image transfer process using different types of mandrels. Fin thickness and fin-to-fin spacing are controlled by an oxidation process used to form oxide sidewalls on the mandrels, and more particularly, by the processing time and the use of intrinsic, oxidation-enhancing and/or oxidation-inhibiting mandrels. Fin thickness is also controlled by using sidewalls spacers combined with or instead of the oxide sidewalls. Specifically, images of the oxide sidewalls alone, images of sidewall spacers alone, and/or combined images of sidewall spacers and oxide sidewalls are transferred into a semiconductor layer to form the fins. The fins with different thicknesses and variable spacing can be used to form a single multiple-fin FET or, alternatively, various single-fin and/or multiple-fin FETs.
摘要:
Method and device for protecting against electrostatic discharge. The method includes configuring a gate of at least one upper transistor of a transistor network connected between power rails to be biased to a prescribed value, and coupling an electrostatic discharge event to a gate of a lower transistor of the transistor network. The at least one upper and at least one lower transistors of the transistor network are respectively coupled between the power rails from a higher voltage to a lower voltage.
摘要:
A field effect transistor with associated parasitic lateral npn bipolar junction transistor includes a source region in a substrate, a channel region in the substrate laterally adjacent to the source region, a drain region in the substrate laterally adjacent to the channel region, and a gate above the channel region of the substrate. In addition, a reduced trigger voltage region of the substrate is positioned below the drain region. The reduced trigger voltage region has a threshold voltage of about zero and comprises an undoped region of the pure wafer substrate. Thus, the reduced trigger voltage region is free of implanted N-type and P-type doping.
摘要:
Vertical junction field effect transistors (VJFETs) having improved heat dissipation at high current flow while maintaining the desirable specific on-resistance and normalized saturated drain current properties characteristic of devices having small pitch lengths are described. The VJFETs comprise one or more electrically active source regions in electrical contact with the source metal of the device and one or more electrically inactive source regions not in electrical contact with the source metal of the device. The electrically inactive source regions dissipate heat generated by the electrically active source regions during current flow.
摘要:
Disclosed is a method of executing an electrical function, such as a fusing operation, by activation through a chip embedded photodiode through spectrally selected external light activation, and corresponding structure and circuit. The present invention is based on having incident light with specific intensity/wave length characteristics, in conjunction with additional circuit elements to an integrated circuit, perform the implementation of repairs, i.e., replacing failing circuit elements with redundant ones for yield and/or reliability. Also to perform disconnection of ESD protection device from input pad once the packaged chip is placed in system. No additional pins on the package are necessary.
摘要:
An integrated circuit amplifier includes, in an exemplary embodiment, a first field effect transistor (FET) device configured as a source follower and a second FET device configured as a tunneling gate FET, the tunneling gate FET coupled to the source follower. The tunneling gate FET is further configured so as to set a transconductance of the amplifier and the source follower is configured so as to set an output conductance of the amplifier.
摘要:
A method of forming a self-aligned SOI diode, the method comprising depositing a protective structure over a substrate; implanting a plurality of diffusion regions of variable dopant types in an area between at least one pair of isolation regions in the substrate, the plurality of diffusion regions separated by a diode junction, wherein the implanting aligns an upper surface of the diode junction with the protective structure; and removing the protective structure. The method further comprises forming a silicide layer over the diffusion regions and aligned with the protective structure. The protective structure comprises a hard mask, wherein the hard mask comprises a silicon nitride layer. Alternatively, the protective structure comprises a polysilicon gate and insulating spacers on opposite sides of the gate. Furthermore, in the removing step, the spacers remain on the substrate.
摘要:
Disclosed is an integrated circuit with multiple semiconductor fins having different widths and variable spacing on the same substrate. The method of forming the circuit incorporates a sidewall image transfer process using different types of mandrels. Fin thickness and fin-to-fin spacing are controlled by an oxidation process used to form oxide sidewalls on the mandrels, and more particularly, by the processing time and the use of intrinsic, oxidation-enhancing and/or oxidation-inhibiting mandrels. Fin thickness is also controlled by using sidewalls spacers combined with or instead of the oxide sidewalls. Specifically, images of the oxide sidewalls alone, images of sidewall spacers alone, and/or combined images of sidewall spacers and oxide sidewalls are transferred into a semiconductor layer to form the fins. The fins with different thicknesses and variable spacing can be used to form a single multiple-fin FET or, alternatively, various single-fin and/or multiple-fin FETs.
摘要:
An ESD protection device includes a source region, a channel region adjacent the source region, and an elongated drain region spaced from the source region by the channel region. The elongated drain region includes an unsilicided portion adjacent the channel and a silicided portion spaced from channel region by the unsilicided portion. A first ESD region is located beneath the silicided portion of the elongated drain region and a second ESD region is located beneath the unsilicided portion of the elongated drain region, the second ESD region being spaced from the first ESD region.
摘要:
An ESD NMOSFET, and a method for lowering a ESD NMOSFET trigger voltage. An ESD NMOSFET is configured in triple well CMOS architecture where the first well is separated from second and third wells by respective shallow well isolation regions. The first well is also separated from the substrate along the bottom by a conductive band region. A substrate contact is located outside of the first, second and third wells, and provides a current path during an ESD event from the first well. Source and drain regions are formed in the first well, to form an FET with the drain being connected to an I/O pad which is subject to an ESD event. A resistive path extends through an opening in the conductive band region to a substrate contact, providing an increased I/O pad to substrate resistance which decreases the trigger voltage for the ESD NMOSFET.