Abstract:
Herein provided are fluidics platform and method for sample preparation and analysis. The fluidics platform is capable of analyzing DNA from blood samples using amplification assays such as polymerase-chain-reaction assays and loop-mediated-isothermal-amplification assays. The fluidics platform can also be used for other types of assays and analyzes. In some embodiments, a sample in a sealed tube can be inserted directly. The following isolation, detection, and analyzes can be performed without a user's intervention. The disclosed platform may also comprises a sample preparation system with a magnetic actuator, a heater, and an air-drying mechanism, and fluid manipulation processes for extraction, washing, elution, assay assembly, assay detection, and cleaning after reactions and between samples.
Abstract:
A thermalcycler is constructing with a first thermalcycler body section of a flexible circuit material or a circuit board material. The first thermalcycler body section has a first face. A first cavity portion is formed in the first face. A second thermalcycler body section is constructed of a flexible circuit material or a circuit board material. The second thermalcycler body section has a second face. A second cavity portion is formed in the second face. When the first cavity portion and the second cavity portion are positioned together they form a cavity. A thermalcycler unit is positioned in the cavity. The first thermalcycler body section and the second thermalcycler body section are connected together with the first face and the face opposed to each other and the thermalcycler unit operatively connected to the first cavity portion and the second cavity portion.
Abstract:
Systems and methods for separating particles and/or toxins from a sample fluid. A method according to one embodiment comprises simultaneously passing a sample fluid and a buffer fluid through a chamber such that a fluidic interface is formed between the sample fluid and the buffer fluid as the fluids pass through the chambers the sample fluid having particles of interest therein; applying a force to the fluids for urging the particles of interest to pass through the interface into the buffer fluid; and substantially separating the buffer fluid from the sample fluid.
Abstract:
A dispensing system delivers a precise amount of fluid for biological or chemical processing and/or analysis. Dispensing means moves the fluid. The dispensing means is operated by a pneumatic force. Connection means delivers the fluid to the desired location. An actuator means provides the pneumatic force to the dispensing means. Valving means transmits the pneumatic force from the actuator means to the dispensing means.
Abstract:
A system for maintaining a liquid slurry of microbeads for use in biological or chemical analysis comprising providing a flexible bag and filling the flexible bag with a slurry of a liquid and microbeads. One embodiment is an apparatus for maintaining liquid slurries of particles for use in biological or chemical analysis comprising a bag, a liquid contained within the bag, and particles contained within the liquid in the bag.
Abstract:
A thermalcycler includes a first thermalcycler body section having a first face and a second thermalcycler body section having a second face. A cavity is formed by the first face and the second face. A thermalcycling unit is positioned in the cavity. A heater trace unit is connected to a support section, to the first thermalcycler body section, to the second thermalcycler body section, and to the thermalcycling unit. The first thermalcycler body section and the second thermalcycler body section are positioned together against the support section to enclose the thermalcycling unit and the heater trace unit.
Abstract:
Methods to improve the performance of an array assay are described. A correlation between fluorescence intensity-related parameters and negative control values of the assay is determined. The parameters are then adjusted as a function of the correlation. As a result, sensitivity of the assay is improved without changes in its specificity.
Abstract:
Methods for determination of threshold values of signatures comprised in an assay are described. Each signature enables detection of a target. The methods determine a probability density function of negative samples and a corresponding false positive rate curve. A false positive criterion is established and a threshold for that signature is determined as a point at which the false positive rate curve intersects the false positive criterion. A method for quantitative analysis and interpretation of assay results together with a method for determination of a desired limit of detection of a signature in an assay are also described.
Abstract:
A bola body, a bola, and methods employing such bola bodies and bolas; in one aspect a bola body having a non-spherical body member from which extend one or more fingers for entanglement with a bola line, with each other, or for latching onto part of a target body.
Abstract:
Systems and methods for separating particles and/or toxins from a sample fluid. A method according to one embodiment comprises simultaneously passing a sample fluid and a buffer fluid through a chamber such that a fluidic interface is formed between the sample fluid and the buffer fluid as the fluids pass through the chamber, the sample fluid having particles of interest therein; applying a force to the fluids for urging the particles of interest to pass through the interface into the buffer fluid; and substantially separating the buffer fluid from the sample fluid.