Abstract:
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Abstract:
Processes and methods relating to treating contaminants and collecting desired substances from a zone of interest using subterranean collection and containment barriers. Tubular casings having interlock structures are used to create subterranean barriers for containing and treating buried waste and its effluents. The subterranean barrier includes an effluent collection system. Treatment solutions provided to the zone of interest pass therethrough and are collected by the barrier and treated or recovered, allowing on-site remediation. Barrier components may be used to in the treatment by collecting or removing contaminants or other materials from the zone of interest.
Abstract:
A tunneling system including a tunneling apparatus including a cutting structure for forming a borehole and at least one linkage section for transmitting a force generally toward the cutting structure is disclosed. A method of disposing a casing string within a subterranean formation by applying a force generally to the trailing end of the tunneling apparatus, generally toward the leading end thereof, but without transmitting the entire force through the entire casing string is also disclosed. At least one linkage section extending within but not in contact with at least one casing section of the casing string may transmit the force. Also, a force limiting member may limit a force applied to the casing string.
Abstract:
A containment system for use adjacent to a selected region of a subterranean formation and comprising a plurality of laterally interlocked casing strings. At least one electrically conductive element is disposed along at least a portion of a casing string and is used for performing electrical time domain reflectometry. At least one protective element may be positioned between portions of adjacent casing strings of the barrier, and at least one electrically conductive element may be disposed at least partially within the at least one protective element for use in indicating at least one characteristic of at least a portion of the containment system. Electrical time domain reflectometry (TDR) may be used to indicate the at least one characteristic; for instance, TDR may be used to indicate leakage through the barrier or a discontinuity or void in a barrier filler material.
Abstract:
Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.
Abstract:
An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.
Abstract:
The present invention relates to a field kit for the detection of analytes and to a method for using such a field kit. The field kit comprises a tray and lid adhered to the surface of the tray. Reaction-reagent compartments are formed by recesses in the tray when the tray is adhered to the lid. Probe compartments may also be included if desired. In operation, the tray and lid are bent at a score line to open the wells containing the reaction reagents. The lid is bent to form an A-shaped structure so that the kit may be placed in an upright position for use. A portion of the lid is peeled back from the tray to release probes and other, non-liquid components, if present.
Abstract:
A magnetic structure configured to generate a compressed magnetic field. The magnetic structure may be advantageously employed in electro-mechanical and electro-magnetic devices.
Abstract:
A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.
Abstract:
A method, system and computer product for detecting the location of a deformation of a structure includes baselining a defined energy transmitting characteristic for each of the plurality of laterally adjacent conductors attached to the structure. Each of the plurality of conductors includes a plurality of segments coupled in series and having an associated unit value representative of the defined energy transmitting characteristic. The plurality of laterally adjacent conductors includes a plurality of identity groups with each identity group including at least one of the plurality of segments from each of the plurality of conductors. Each of the plurality of conductors are monitored for a difference in the defined energy transmitting characteristic when compared with a baseline energy transmitting characteristic for each of the plurality of conductors. When the difference exceeds a threshold value, a location of the deformation along the structure is calculated.