摘要:
The invention relates to an induction crucible furnace and to a magnetic return element for an induction crucible furnace. The induction crucible furnace has a corresponding coil and a plurality of magnetic return elements, which are designed in the form of individual units arranged on the outer lateral surface of the coil with peripheral spacing. In order to guide the magnetic flux produced by the coil, the magnetic return elements each have an assembly consisting of a plurality of elongate individual elements of magnetically permeable material that are electrically insulated from each other and extend parallel to the furnace axis. Said individual elements consist at least partially of bars, which are electrically insulated from each other and the longitudinal axes of which extend parallel to the furnace axis. In this way, both eddy currents that hit the assembly from the radial direction and eddy currents that hit the assembly with a transverse component are minimized.
摘要:
A crucible device with temperature control design includes a crucible body, an induction coil unit, a nozzle flange body and a melt delivery tube and a temperature control unit. The induction coil unit surrounds the crucible body, provides a heat source during use, and is configured to enable a metal material to melt and produce a melt having a melting skull. The melt delivery tube is communicated via the nozzle flange body to a bottom of the crucible body and is configured to deliver the melt from the crucible body. The temperature control unit includes a microprocessor, a heater and a temperature sensor which are electrically coupled to each other, and are configured to control a curve of the melting skull to drop to a preset position.
摘要:
Vessels used for melting material to be injection molded to form a part are described. One vessel has a body formed from a plurality of elongate segments configured to be electrically isolated from each other and with a melting portion for melting meltable material therein. Material can be provided between adjacent segments. An induction coil can be used to melt the material in the body. Other vessels have a body with an embedded induction coil therein. The embedded coil can be configured to surround the melting portion, or can be positioned below and/or adjacent the melting portion, so that meltable material is melted. The vessels can be used to melt amorphous alloys, for example.
摘要:
Apparatus and method are provided for damping the induced fluid flow, particularly in the region of the base plate, in an electrically conductive material that is heated and melted in a cold crucible induction furnace. Damping is accomplished by establishing a dc magnetic field such that flow of the electrically conductive liquid metal in that dc magnetic field would induce eddy currents in the liquid metal which would generate forces that tend to oppose the flow. The dc magnetic field may be established by dc current flow in the ac induction coil that induces current in the material, dc current flow in a separate dc coil, or coils, constructed to prevent excessive induced losses, by discrete magnets, or a combination of any of the three prior methods. The dc magnetic field may also be established by dc current flow in one or more dc coils disposed around a magnetic pole piece located below the base of the furnace. One end of the magnetic pole piece is located adjacent to the bottom of the crucible base, so that the pole piece concentrates the dc field into the lower portion of the molten electrically conductive material.
摘要:
An induction melting apparatus for the manufacture of gas atomized titanium powder that is free from contamination characteristic of conventional melting practices.
摘要:
Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.
摘要:
A cold crucible induction furnace has a slotted-wall with a slotted inner annular protrusion that is disposed around the base of the crucible's melting chamber. The protrusions may be separated from the base by a gap that can be filled with an electrical insulating material. Slots may also be provided in the protrusions and/or the outer perimeter of the base.
摘要:
An induction heating furnace includes a furnace body having a side wall extending so obliquely as to increase in radius from the bottom to the top edge portion and formed by a plurality of longitudinally split, conductive segments arrayed circumferentially and insulated from each other, a first induction heating coil arranged at an outer periphery of the side wall for subjecting a to-be-heated material accommodated in the furnace body to induction heating and a melt-use power source for supplying AC power to the first induction heating coil.
摘要:
An induction heating furnace includes a furnace body having a side wall extending so obliquely as to increase in radius from the bottom to the top edge portion and formed by a plurality of longitudinally split, conductive segments arrayed circumferentially and insulated from each other, a first induction heating coil arranged at an outer periphery of the side wall for subjecting a to-be-heated material accommodated in the furnace body to induction heating and a melt-use power source for supplying AC power to the first induction heating coil.
摘要:
A method is provided for cleaning deposits from a component of a semiconductor crystal growing furnace, where the furnace includes a hot zone and where the component is positioned outside the hot zone during the crystal growing process. The method typically includes providing the furnace including the component, removing the component from outside the hot zone, placing the component within the hot zone, and heating the hot zone to clean the component. The component may be virtually any furnace component, including a graphite chimney, purge tube, quartz window, or ceramic insulator.