Abstract:
The present invention relates, e.g., to a method for pre-processing a sample for mass spectral analysis, comprising cleaving proteins in the sample to peptides and immunodepleting highly abundant and/or well-ionizing and/or proteotypic peptides from the sample. Also described are methods for identifying well-ionizing peptides for use in this and other methods; analytic (diagnostic) methods using antibodies against highly ionizable peptides from a protein target of interest; and compositions, kits and devices comprising antibodies of the invention.
Abstract:
The invention relates to secreted proteins from cardiac stem cells (cardiospheres and cardiosphere-derived cells) or myocytes for diagnostic and/or therapeutic use.
Abstract:
Methods and kits are provided for separating a mixture of proteins in a biological sample. Methods for detecting and profiling proteins in biological samples by the separation method and kits are also provided. These methods are particularly useful in assessing damage to cells such as cardiac and skeletal muscle cells and in the early clinical diagnosis of myocardial damage by detection of myofilament proteins in serum of a subject.
Abstract:
A method for assessing muscle damage in a biological sample obtained from a subject is disclosed. The method involves obtaining a biological sample from a subject being assessed for muscle damage, and evaluating the sample for the presence or absence of a myofilament protein modification product. Preferably, the myofilament protein modification product is a chemical adduct of a myofilament protein. The method can also be used to assess the extent and/or type of muscle damage in a subject by studying the profile of myofilament protein modification products detected in the sample taken from the subject. The invention further provides a method for screening for an agent which modulates the level of a myofilament protein modification product an present in a biological sample or for a calcium sensitizing agent. The invention is applicable to cardiac muscle and skeletal muscle.
Abstract:
This invention relates to novel phosphorylation sites in cardiac Troponin I that are associated with the onset of heart failure. The phosphorylation sites, i.e., serine 5, tyrosine 26, threonine 51, serine 166, threonine 181 and/or serine 199, can be used as biomarkers for (i) identifying subjects at risk for the development of heart failure, (ii) treating subjects having a higher than normal level of the biomarker, and (iii) monitoring therapy of a subject at risk for the development of heart failure. Also described are antibodies, reagents, and kits for carrying out a method of the present invention.
Abstract:
A method of screening for compounds that enhance or depress contractile function, based on measuring the formation of heterodimers of contractile fibers (e.g. Tm and actin, myosin heavy and myosin light chains), for example through disulfide bond formation. Diagnostic and prognostic methods and kits are also provided.
Abstract:
The present invention relates, e.g., to a method for pre-processing a sample for mass spectral analysis, comprising cleaving proteins in the sample to peptides and immunodepleting highly abundant and/or well-ionizing and/or proteotypic peptides from the sample. Also described are methods for identifying well-ionizing peptides for use in this and other methods; analytic (diagnostic) methods using antibodies against highly ionizable peptides from a protein target of interest; and compositions kits and devices comprising antibodies of the invention.
Abstract:
Methods and kits are provided for separating a mixture of proteins in a biological sample. Methods for detecting and profiling proteins in biological samples by the separation method and kits are also provided. These methods are particularly useful in assessing damage to cells such as cardiac and skeletal muscle cells and in the early clinical diagnosis of myocardial damage by detection of myofilament proteins in serum of a subject.