Abstract:
A memory cell includes a substrate, an access transistor and a storage capacitor. The access transistor comprising a gate stack disposed on the substrate, and a first and second diffusion region located on a first and second opposing sides of the gate stack. The storage capacitor comprises a first capacitor plate comprising a portion embedded within the substrate below the first diffusion region, a second capacitor plate and a capacitor dielectric sandwiched between the embedded portion of the first capacitor plate. At least a portion of the first diffusion region forms the second capacitor plate.
Abstract:
A method and structure for a memory device, such as a 1T-SRAM, having a capacitor top plate directly over a doped bottom plate region. An example device comprises the following. An isolation film formed as to surround an active area on a substrate. A gate dielectric and gate electrode formed over a portion of the active area. A source element and a drain element in the substrate adjacent to the gate electrode. The drain element is comprised of a drain region and a bottom plate region. The drain region is between the bottom plate region and the gate structure. A capacitor dielectric and a capacitor top plate are over at least portions of the bottom plate region.
Abstract:
A method for forming selective P type and N type gates is described. A first gate oxide layer is grown overlying a semiconductor substrate. A polysilicon layer is deposited overlying the first gate oxide layer. The polysilicon layer is patterned to form first NMOS gates. A second gate oxide layer is grown overlying the substrate. A polysilicon-germanium layer is deposited overlying the second gate oxide layer and the first gates. The polysilicon-germanium layer and first gates are planarized to a uniform thickness. The polysilicon first gates and the polysilicon-germanium layer are patterned to form second NMOS polysilicon gates and PMOS polysilicon-germanium gates.
Abstract:
A method is provided for manufacturing an integrated circuit having a plurality of MOSFET devices, comprising the steps of: providing a plurality of MOSFET devices each having a first and a second structural parameter associated therewith, wherein a value of one of the first and a second structural parameter of each device is selected to provide a value of a performance parameter of the device substantially equal to a predetermined reference value, the predetermined reference value being the same for each device.
Abstract:
An integrated circuit system is provided including providing a substrate, forming an isolation structure base in the substrate without removal of the substrate, and forming a first transistor in the substrate next to the isolation structure base.
Abstract:
A method and structure for a memory device, such as a 1T-SRAM, having a capacitor top plate directly over a doped bottom plate region. An example device comprises the following. An isolation film formed as to surround an active area on a substrate. A gate dielectric and gate electrode formed over a portion of the active area. A source element and a drain element in the substrate adjacent to the gate electrode. The drain element is comprised of a drain region and a bottom plate region. The drain region is between the bottom plate region and the gate structure. A capacitor dielectric and a capacitor top plate are over at least portions of the bottom plate region.
Abstract:
A method for forming selective P type and N type gates is described. A first gate oxide layer is grown overlying a semiconductor substrate. A polysilicon layer is deposited overlying the first gate oxide layer. The polysilicon layer is patterned to form first NMOS gates. A second gate oxide layer is grown overlying the substrate. A polysilicon-germanium layer is deposited overlying the second gate oxide layer and the first gates. The polysilicon-germanium layer and first gates are planarized to a uniform thickness. The polysilicon first gates and the polysilicon-germanium layer are patterned to form second NMOS polysilicon gates and PMOS polysilicon-germanium gates.
Abstract:
A method for forming a dual Si—Ge poly-gates having different Ge concentrations is described. An NMOS active area and a PMOS active area are provided on a semiconductor substrate separated by an isolation region. A gate oxide layer is grown overlying the semiconductor substrate in each of the active areas. A polycrystalline silicon-germanium (Si—Ge) layer is deposited overlying the gate oxide layer wherein the polycrystalline Si—Ge layer has a first Ge concentration. The NMOS active area is blocked while the PMOS active area is exposed. Successive cycles of Ge plasma doping and laser annealing into the PMOS active area are performed to achieve a second Ge concentration higher than the first Ge concentration. The polycrystalline Si—Ge layer is patterned to form a gate in each of the active areas wherein the gate in the PMOS active area has a higher Ge concentration than the gate in the NMOS active area to complete formation of dual Si—Ge polysilicon gates with different Ge concentrations in the fabrication of an integrated circuit device.
Abstract:
An integrated circuit system is provided including providing a substrate, forming an isolation structure base in the substrate without removal of the substrate, and forming a first transistor in the substrate next to the isolation structure base.
Abstract:
A method for forming selective P type and N type gates is described. A gate oxide layer is grown overlying a semiconductor substrate. A polysilicon layer is deposited overlying the gate oxide layer. Germanium ions are implanted into a portion of the polysilicon layer not covered by a mask to form a polysilicon-germanium layer. The polysilicon layer and the polysilicon-germanium layer are patterned to form NMOS polysilicon gates and PMOS polysilicon-germanium gates. In an alternative, nitrogen ions are implanted into the polysilicon-germanium layer and the gates are annealed after patterning to redistribute the germanium ions throughout the polysilicon-germanium layer. In a second alternative, germanium ions are implanted into a first thin polysilicon layer, then a second polysilicon layer is deposited to achieve the total polysilicon layer thickness before patterning the gates.