摘要:
This document describes materials and methods for, for example, producing 6-hydroxyhexanoic acid using a β-ketothiolase or synthase and an alcohol O-acetyltransferase to form a 6-acetyloxy-3-oxohexanoyl-CoA intermediate. This document describes biochemical pathways for producing 6-hydroxyhexanoic acid using a β-ketothiolase or synthase and an alcohol O-acetyltransferase to form a 6-acetyloxy-3-oxohexanoyl-CoA intermediate. 6-hydroxyhexanoic acid can be enzymatically converted to adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine or 1,6-hexanediol. This document also describes recombinant hosts producing 6-hydroxyhexanoic acid as well as adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine and 1,6-hexanediol.
摘要:
This document describes biochemical pathways for producing 4-hydroxybutyrate, 4-aminobutyrate, putrescine or 1,4-butanediol by forming one or two terminal functional groups, comprised of amine or hydroxyl group, in a C5 backbone substrate such as 2-oxoglutarate or L-glutamate.
摘要:
The present disclosure relates to methods for separating and purifying a long chain diacid from other long chain diacids, monocarboxylic acids, hydroxyl acids or alkanes by simulated or actual moving bed chromatography.
摘要:
This document describes biochemical pathways for biosynthesizing a 3-oxo-7-hydroxyheptanoyl-CoA intermediate using a β-ketothiolase, and enzymatically converting 3-oxo-7-hydroxyheptanoyl-CoA to 7-hydroxyheptanoic acid. —7-hydroxyheptanoic acid can be further enzymatically converted to pimelic acid, 7-aminoheptanoic acid, heptamethylenediamine or 1,7-heptanediol. This document also describes recombinant hosts producing 7-hydroxyheptanoic acid as well as pimelic acid, 7-aminoheptanoic acid, heptamethylenediamine and 1,7-heptanediol.
摘要:
This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the fatty acid synthesis pathway and oxidative cleavage of long chain acyl-[acp] intermediates by a monooxgenase (e.g., cytochrome P450) such as that encoded by BioI from microorganisms such as Bacillus subtillis.
摘要:
This document describes biochemical pathways for producing 7-hydroxyheptanoic acid using a polypeptide having monooxygenase activity to form a 8-hydroxynonanoate intermediate, which can be converted to 7-hydroxyheptanoate using a polypeptide having monooxygenase activity, a polypeptide having secondary alcohol dehydrogenase activity, and a polypeptide having esterase activity. 7-hydroxyheptanoic acid can be enzymatically converted to pimelic acid, 7-aminoheptanoic acid, heptamethylenediamine or 1,7 heptanediol. This document also describes recombinant hosts producing 7-hydroxyheptanoic acid as well as pimelic acid, 7-aminoheptanoic acid, heptamethylenediamine and 1,7 heptanediol.
摘要:
This document describes biochemical pathways for producing adipic acid, caprolactam, 6-aminohexanoic acid, 6-hydroxyhexanoic acid, hexamethylenediamine or 1,6-hexanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C6 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on CoA-dependent elongation enzymes or analogues enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
摘要:
Described herein are processes for the conversion of ethylene into C5+ olefins, naphthenics, and aromatics via a dual catalyst reaction utilizing a dehydroaromatization catalyst.
摘要:
This document describes materials and methods for, for example, producing 6-hydroxyhexanoic acid using a β-ketothiolase or synthase and an alcohol O-acetyltransferase to form a 6-acetyloxy-3-oxohexanoyl-CoA intermediate. This document describes biochemical pathways for producing 6-hydroxyhexanoic acid using a β-ketothiolase or synthase and an alcohol O-acetyltransferase to form a 6-acetyloxy-3-oxohexanoyl-CoA intermediate. 6-hydroxyhexanoic acid can be enzymatically converted to adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine or 1,6-hexanediol. This document also describes recombinant hosts producing 6-hydroxyhexanoic acid as well as adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine and 1,6-hexanediol.
摘要:
This document describes biochemical pathways for producing 4-hydroxybutyrate, 4-aminobutyrate, putrescine or 1,4-butanediol by forming one or two terminal functional groups, comprised of amine or hydroxyl group, in a C5 backbone substrate such as 2-oxoglutarate or L-glutamate.