Abstract:
A method of forming an image sensor device includes forming a light sensing region at a front surface of a silicon substrate and a patterned metal layer there over. Thereafter, the method includes depositing a metal oxide anti-reflection laminate on the first surface of the substrate. The metal oxide anti-reflection laminate includes one or more composite layers of thin metal oxides stacked over the photodiode. Each composite layer includes two or more metal oxide layers: one metal oxide is a high energy band gap metal oxide and another metal oxide is a high refractive index metal oxide.
Abstract:
A system and method for manufacturing a semiconductor device is provided. An embodiment comprises forming a deposited layer using an atomic layer deposition (ALD) process. The ALD process may utilize a first precursor for a first time period, a first purge for a second time period longer than the first time period, a second precursor for a third time period longer than the first time period, and a second purge for a fourth time period longer than the third time period.
Abstract:
A novel method for forming electrodes in the fabrication of an MIM (metal-insulator-metal) capacitor, is disclosed. The method improves MIM capacitor performance by preventing plasma-induced damage to a dielectric layer during deposition of a top electrode on the dielectric layer, as well as by reducing or preventing the formation of an interfacial layer between the dielectric layer and the electrode or electrodes, in fabrication of the MIM capacitor. The method typically includes the patterning of crown-type capacitor openings in a substrate; depositing a bottom electrode in each of the crown openings; subjecting the bottom electrode to a rapid thermal processing (RTP) or furnace anneal step; depositing a dielectric layer on the annealed bottom electrode; depositing a top electrode on the dielectric layer using a plasma-free CVD (chemical vapor deposition) or ALD (atomic layer deposition) process; and patterning the top electrode of each MIM capacitor.
Abstract:
A capacitor and methods for forming the same are provided. The method includes forming a bottom electrode; treating the bottom electrode in an oxygen-containing environment to convert a top layer of the bottom electrode into a buffer layer; forming an insulating layer on the buffer layer; and forming a top electrode over the insulating layer.
Abstract:
A system and method for manufacturing a semiconductor device is provided. An embodiment comprises forming a deposited layer using an atomic layer deposition (ALD) process. The ALD process may utilize a first precursor for a first time period, a first purge for a second time period longer than the first time period, a second precursor for a third time period longer than the first time period, and a second purge for a fourth time period longer than the third time period.
Abstract:
A method of manufacturing a semiconductor device includes forming a metal-insulator-metal (MIM) device having a metal organic chemical vapor deposited (MOCVD) lower electrode and an atomic layer deposited (ALD) upper electrode.
Abstract:
A method of manufacturing a semiconductor device includes forming a metal-insulator-metal (MIM) device having a metal organic chemical vapor deposited (MOCVD) lower electrode and an atomic layer deposited (ALD) upper electrode.
Abstract:
Disclosed herein are new MIM structures having increased capacitance with little or no tunneling current, and related methods of manufacturing the same. In one embodiment, the new MIM structure comprises a first electrode comprising a magnetic metal and having a magnetic moment aligned in a first direction, and a second electrode comprising a magnetic metal and having a magnetic moment aligned in a second direction antiparallel to the first direction. In addition, such an MIM structure comprises a dielectric layer formed between the first and second electrodes and contacting the first and second magnetic metals.
Abstract:
A novel method for forming electrodes in the fabrication of an MIM (metal-insulator-metal) capacitor, is disclosed. The method improves MIM capacitor performance by preventing plasma-induced damage to a dielectric layer during deposition of a top electrode on the dielectric layer, as well as by reducing or preventing the formation of an interfacial layer between the dielectric layer and the electrode or electrodes, in fabrication of the MIM capacitor. The method typically includes the patterning of crown-type capacitor openings in a substrate; depositing a bottom electrode in each of the crown openings; subjecting the bottom electrode to a rapid thermal processing (RTP) or furnace anneal step; depositing a dielectric layer on the annealed bottom electrode; depositing a top electrode on the dielectric layer using a plasma-free CVD (chemical vapor deposition) or ALD (atomic layer deposition) process; and patterning the top electrode of each MIM capacitor.
Abstract:
Disclosed herein are new MIM structures having increased capacitance with little or no tunneling current, and related methods of manufacturing the same. In one embodiment, the new MIM structure comprises a first electrode comprising a magnetic metal and having a magnetic moment aligned in a first direction, and a second electrode comprising a magnetic metal and having a magnetic moment aligned in a second direction antiparallel to the first direction. In addition, such an MIM structure comprises a dielectric layer formed between the first and second electrodes and contacting the first and second magnetic metals.